Visualizing The Journey of a Mining Entrepreneur
Connect with us

Sponsored

Visualizing the Journey of a Mining Entrepreneur

Published

on

The following content is sponsored by Cartier Resources

Mining Entrepreneur

Visualizing the Journey of a Mining Entrepreneur

Mining may be an industry nearly as old as humankind itself, but the process of how a patch of ground becomes a mine is no different from the modern start-up.

It takes someone with vision, knowledge, capital, and especially social skills to navigate the hurdles and pitfalls in order to move their project forward and become a true mining entrepreneur.

This infographic sponsored by Cartier Resources takes a look at the journey of a mining entrepreneur, from inspiration to market success.

1. Inspiration: Seeing Value Where Others Do Not

This is where all great businesses start…a great idea! There are several ways to find inspiration in mining and mineral exploration, such as:

  • An old mine that was closed because of low prices
  • A geological trend that could continue onto a new property
  • A unique geochemical pattern that could hint at more below
  • An old property with a new geological insight

Real World Example: Uranium in Moose Pasture

Mine engineer and prospector Arthur Stollery had staked 83 claims in the Elliot Lake camp of Ontario. He sold his claims to Stephen Roman for $30,000 and 500,000 shares of Consolidated Denison, now known just as Denison Mines.

Those claims contained the largest uranium deposit in the world at that time and turned Stephen Roman and Denison into a major mining powerhouse.

2. Learning: Prospecting and Target Generation

At this stage, a mining entrepreneur needs to start building the case on how to test their idea. This starts with a theory about the location of new mineral deposits and will need to find a place to start exploring.

In order to start, the explorer first needs to find clues to support the theory. This is done through several techniques:

  1. Metal detection
  2. Prospecting with hand tools
  3. Electromagnetic prospecting
  4. Geochemical prospecting

All data collected through these processes is typically mapped and will help determine the location of where to drill.

Real World Example: Chile’s Copper Deposits

David Lowell, the world’s greatest mine finder, came up with a model to find low-grade copper porphyry deposits. He would go on to uncover some of the world’s largest copper mines such as the Escondida deposit in Chile.

3. Start-up: Proving the Value with Drilling

Drilling is one of the most important stages, and it can also be one of the most expensive. It is drilling that locates and defines economic mineralization. It is the ultimate test for all ideas, theories, and predictions.

There are three types of drilling:

  1. Auger drilling
  2. Rotary percussion drilling
  3. Diamond drilling

Drilling pulls up samples of the earth below and hopefully contains the valuable metals in enough quantities to make an economic deposit. However, it can be hit or miss and requires expert judgement as to whether there is further potential.

Real World Example: Falconbridge Nickel Mine

The original owner of the Falconbridge claims was the Thomas Edison of lightbulb fame, who gave up his hunt for nickel when his exploration drilling encountered quicksand. Thayer Lindsay bought claims, did further drilling and developed the company’s first nickel mine which helped build the city of Sudbury, Ontario.

4. Scale-up: Building Relationships

Now, if you have drill results that prove there is an economic ore body, you have to start building relationships to finance further studies.

  1. Engineering
  2. Cost estimates
  3. Operating costs
  4. Reserve calculations

Real World Example: Iron in the Far North

Jules Timmins purchased the mineral rights to the Ungava region in northern Quebec in 1941. He confirmed the size of an iron resource and a company. The iron ore was high quality and near the surface, allowing for low cost open pit mining but the infrastructure and financing challenges were large. Timmins raised the capital to build a 560-kilometer railroad, a shipping terminal, and the iron ore mine at a cost of nearly $300 million.

5. Champion: Going to the Market

If a mining entrepreneur has discovered something of value, it is time to go to market to sell or to raise money to build a mine. The entrepreneur has to champion the work in order to sell the property or develop the mineral property to bring his discovery to the next stage.

Real World Example: From Prospect to Asset in the Yukon

Shaun Ryan, a successful prospector and mining entrepreneur, began staking claims and then optioning the district to several explorers.

One of his claims became the Coffee deposit, developed by Kaminak Gold before Goldcorp bought it. Another claim, the White Gold property, went to Underworld Resources, which was bought in 2010 by Kinross for $139 million.

End of the Road or Beginning of the End?

If a mining entrepreneur has made it this far, he or she can count themselves lucky, as few make it this far.

But for those that do not, the mineral exploration process is a learning process and the knowledge acquired could be the next inspiration or opportunity for another mining entrepreneur.

Click for Comments

Sponsored

Smashing Atoms: The History of Uranium and Nuclear Power

Nuclear power is among the world’s cleanest sources of energy, but how did uranium and nuclear power come to be?

Published

on

uranium and nuclear power

The History of Uranium and Nuclear Power

Uranium has been around for millennia, but we only recently began to understand its unique properties.

Today, the radioactive metal fuels hundreds of nuclear reactors, enabling carbon-free energy generation across the globe. But how did uranium and nuclear power come to be?

The above infographic from the Sprott Physical Uranium Trust outlines the history of nuclear energy and highlights the role of uranium in producing clean energy.

From Discovery to Fission: Uncovering Uranium

Just like all matter, the history of uranium and nuclear energy can be traced back to the atom.

Martin Klaproth, a German chemist, first discovered uranium in 1789 by extracting it from a mineral called “pitchblende”. He named uranium after the then newly discovered planet, Uranus. But the history of nuclear power really began in 1895 when German engineer Wilhelm Röntgen discovered X-rays and radiation, kicking off a series of experiments and discoveries—including that of radioactivity.

In 1905, Albert Einstein set the stage for nuclear power with his famous theory relating mass and energy, E = mc2. Roughly 35 years later, Otto Hahn and Fritz Strassman confirmed his theory by firing neutrons into uranium atoms, which yielded elements lighter than uranium. According to Einstein’s theory, the mass lost during the reaction changed into energy. This demonstrated that fission—the splitting of one atom into lighter elements—had occurred.

“Nuclear energy is incomparably greater than the molecular energy which we use today.”

—Winston Churchill, 1955.

Following the discovery of fission, scientists worked to develop a self-sustaining nuclear chain reaction. In 1939, a team of French scientists led by Frédéric Joliot-Curie demonstrated that fission can cause a chain reaction and filed the first patent on nuclear reactors.

Later in 1942, a group of scientists led by Enrico Fermi and Leo Szilard set off the first nuclear chain reaction through the Chicago Pile-1. Interestingly, they built this makeshift reactor using graphite bricks on an abandoned squash court in the University of Chicago.

These experiments proved that uranium could produce energy through fission. However, the first peaceful use of nuclear fission did not come until 1951, when Experimental Breeder Reactor I (EBR-1) in Idaho generated the first electricity sourced from nuclear power.

The Power of the Atom: Nuclear Power and Clean Energy

Nuclear reactors harness uranium’s properties to generate energy without any greenhouse gas emissions. While uranium’s radioactivity makes it unique, it has three other properties that stand out:

  • Material Density: Uranium has a density of 19.1g/cm3, making it one of the densest metals on Earth. For reference, it is nearly as heavy (and dense) as gold.
  • Abundance: At 2.8 parts per million, uranium is approximately 700 times more abundant than gold, and 37 times more abundant than silver.
  • Energy Density: Uranium is extremely energy-dense. A one-inch tall uranium pellet contains the same amount of energy as 120 gallons of oil.

Thanks to its high energy density, the use of uranium fuel makes nuclear power more efficient than other energy sources. This includes renewables like wind and solar, which typically require much more land (and more units) to generate the same amount of electricity as a single nuclear reactor.

But nuclear power offers more than just a smaller land footprint. It’s also one of the cleanest and most reliable energy sources available today, poised to play a major role in the energy transition.

The Future of Uranium and Nuclear Power

Although nuclear power is often left out of the clean energy conversation, the ongoing energy crisis has brought it back into focus.

Several countries are going nuclear in a bid to reduce reliance on fossil fuels while building reliable energy grids. For example, nuclear power is expected to play a prominent role in the UK’s plan to reach net-zero carbon emissions by 2050. Furthermore, Japan recently approved restarts at three of its nuclear reactors after initially phasing out nuclear power following the Fukushima accident.

The resurgence of nuclear power, in addition to reactors that are already under construction, will likely lead to higher demand for uranium—especially as the world embraces clean energy.

Continue Reading

Sponsored

Showcasing the Strength of Canadian Gold Mining

Canadian gold mining has grown to become a highly prolific industry, thanks to its geological riches and political stability.

Published

on

gold mining canada

Showcasing the Strength of Canadian Gold Mining

Gold mining has long played an integral role in shaping Canada’s cities and its modern day economy. The gold mining infrastructure that was built alongside the country’s towns in the 19th century has grown to provide $21.6 billion worth of exports for Canada in 2020.

When combined with the country’s superb geology, Canada’s jurisdictional strengths make it one of the most prolific and secure locations in the world for mining companies to explore, develop, and produce gold.

This infographic sponsored by Clarity Gold dives into how Canada has grown into a nation built for gold mining. Both in how the country facilitates the production of gold, and how the gold mining industry supports Canada’s economy and local communities.

Canada’s Golden Geology and Production

Gold is scattered across the Canadian landscape in a variety of gold mining regions and districts, with the most prolific located between Ontario and Québec.

The 2 billion year-old Archean greenstone belt that arcs through the centre of the Canadian shield provides the foundation for the Abitibi gold belt, which has produced more than 190Moz of gold.

Gold Mining District/RegionProvinces/TerritoriesGold Produced (million troy ounces)
Abitibi Greenstone BeltOntario and Québec>190Moz
Trans-Hudson CorridorSaskatchewan and Manitoba>40Moz
Red LakeOntario>30Moz
Golden TriangleBritish Columbia>5Moz

Source: Resource World

The Trans-Hudson corridor in Saskatchewan and Manitoba has produced more than 40Moz of gold, while the Red Lake mining district of eastern Ontario and the Golden Triangle in British Columbia have delivered >30Moz and >5Moz respectively.

Last year, Canada’s top 10 mines produced 3.26 million ounces of gold combined, equating to more than $6 billion worth of the yellow precious metal.

MineProvince/TerritoryPrimary Owner/Operator2020 Gold Production (thousand troy ounces)
Canadian MalarticQuébecYamana/Agnico Eagle569Koz
Detour LakeOntarioKirkland Lake517Koz
LaRonde (incl. LZ5)QuébecAgnico Eagle350Koz
BrucejackBritish ColumbiaPretium348Koz
PorcupineOntarioNewmont319Koz
MeliadineNunavutAgnico Eagle312Koz
Rainy RiverOntarioNew Gold229Koz
HemloOntarioBarrick Gold223Koz
MeadowbankNunavutAgnico Eagle209Koz
MacassaOntarioKirkland Lake183Koz

Source: Kitco

Ontario and Québec are the powerhouse provinces of Canadian gold production, hosting 30 mines between the two provinces.

A Nation Built for Gold Mining

Canada’s politically secure nature and established permitting process has resulted in five of the 10 largest gold mining companies having projects in Canada. Three Canadian provinces (Saskatchewan, Québec, and Newfoundland & Labrador) are among the world’s 10 most attractive mining investment jurisdictions according to the Fraser Institute’s 2020 survey of mining companies.

Beyond the legal and permitting strengths of the nation, Canada’s extensive network of capital markets has enabled the Canadian companies to dominate the world’s gold mining industry. With Agnico Eagle and Kirkland Lake’s upcoming merger, three of the world’s top five gold mining companies will be headquartered in Canada.

The Canadian equity markets are a key driver of the world’s gold exploration and development funding, with the TSX having raised $7.5 billion in mining equity capital in 2020. Gold still remains the major driver of these money flows, with gold mining companies making up more than half of Canada’s mining exploration budget.

How Gold Mining Gives Back to Canada

Ever since the first discoveries of gold across Canada in the 1800s, the development and production of gold mines has been the foundation for many towns and merchants across the nation.

Today, Canada’s mining industry directly employs more than 392,000 Canadians, with the sector offering the highest average annual industrial rate of pay in the country at $123,000. The industry is also proportionally the largest private sector employer of Indigenous peoples in Canada.

From the nation’s prolific gold deposits to its network of funding through robust public markets for mining equities, gold mining has grown into one of Canada’s most important strengths. The discovery, development, and production of the precious metal will remain an essential pillar of Canada’s economy.

Continue Reading

Subscribe

Popular