Mining
Rare Earth Elements: Where in the World Are They?
Subscribe to the Elements free mailing list for more like this
Rare Earths Elements: Where in the World Are They?
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Rare earth elements are a group of metals that are critical ingredients for a greener economy, and the location of the reserves for mining are increasingly important and valuable.
This infographic features data from the United States Geological Society (USGS) which reveals the countries with the largest known reserves of rare earth elements (REEs).
What are Rare Earth Metals?
REEs, also called rare earth metals or rare earth oxides, or lanthanides, are a set of 17 silvery-white soft heavy metals.
The 17 rare earth elements are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium (Sc), and yttrium (Y).
Scandium and yttrium are not part of the lanthanide family, but end users include them because they occur in the same mineral deposits as the lanthanides and have similar chemical properties.
The term “rare earth” is a misnomer as rare earth metals are actually abundant in the Earth’s crust. However, they are rarely found in large, concentrated deposits on their own, but rather among other elements instead.
Rare Earth Elements, How Do They Work?
Most rare earth elements find their uses as catalysts and magnets in traditional and low-carbon technologies. Other important uses of rare earth elements are in the production of special metal alloys, glass, and high-performance electronics.
Alloys of neodymium (Nd) and samarium (Sm) can be used to create strong magnets that withstand high temperatures, making them ideal for a wide variety of mission critical electronics and defense applications.
End-use | % of 2019 Rare Earth Demand |
---|---|
Permanent Magnets | 38% |
Catalysts | 23% |
Glass Polishing Powder and Additives | 13% |
Metallurgy and Alloys | 8% |
Battery Alloys | 9% |
Ceramics, Pigments and Glazes | 5% |
Phosphors | 3% |
Other | 4% |
The strongest known magnet is an alloy of neodymium with iron and boron. Adding other REEs such as dysprosium and praseodymium can change the performance and properties of magnets.
Hybrid and electric vehicle engines, generators in wind turbines, hard disks, portable electronics and cell phones require these magnets and elements. This role in technology makes their mining and refinement a point of concern for many nations.
For example, one megawatt of wind energy capacity requires 171 kg of rare earths, a single U.S. F-35 fighter jet requires about 427 kg of rare earths, and a Virginia-class nuclear submarine uses nearly 4.2 tonnes.
Global Reserves of Rare Earth Minerals
China tops the list for mine production and reserves of rare earth elements, with 44 million tons in reserves and 140,000 tons of annual mine production.
While Vietnam and Brazil have the second and third most reserves of rare earth metals with 22 million tons in reserves and 21 million tons, respectively, their mine production is among the lowest of all the countries at only 1,000 tons per year each.
Country | Mine Production 2020 | Reserves | % of Total Reserves |
---|---|---|---|
China | 140,000 | 44,000,000 | 38.0% |
Vietnam | 1,000 | 22,000,000 | 19.0% |
Brazil | 1,000 | 21,000,000 | 18.1% |
Russia | 2,700 | 12,000,000 | 10.4% |
India | 3,000 | 6,900,000 | 6.0% |
Australia | 17,000 | 4,100,000 | 3.5% |
United States | 38,000 | 1,500,000 | 1.3% |
Greenland | - | 1,500,000 | 1.3% |
Tanzania | - | 890,000 | 0.8% |
Canada | - | 830,000 | 0.7% |
South Africa | - | 790,000 | 0.7% |
Other Countries | 100 | 310,000 | 0.3% |
Burma | 30,000 | N/A | N/A |
Madagascar | 8,000 | N/A | N/A |
Thailand | 2,000 | N/A | N/A |
Burundi | 500 | N/A | N/A |
World Total | 243,300 | 115,820,000 | 100% |
While the United States has 1.5 million tons in reserves, it is largely dependent on imports from China for refined rare earths.
Ensuring a Global Supply
In the rare earth industry, China’s dominance has been no accident. Years of research and industrial policy helped the nation develop a superior position in the market, and now the country has the ability to control production and the global availability of these valuable metals.
This tight control of the supply of these important metals has the world searching for their own supplies. With the start of mining operations in other countries, China’s share of global production has fallen from 92% in 2010 to 58%< in 2020. However, China has a strong foothold in the supply chain and produced 85% of the world’s refined rare earths in 2020.
China awards production quotas to only six state-run companies:
- China Minmetals Rare Earth Co
- Chinalco Rare Earth & Metals Co
- Guangdong Rising Nonferrous
- China Northern Rare Earth Group
- China Southern Rare Earth Group
- Xiamen Tungsten
As the demand for REEs increases, the world will need tap these reserves. This graphic could provide clues as to the next source of rare earth elements.
Mining
The 50 Minerals Critical to U.S. Security
This graphic lists all minerals that are deemed critical to both the economic and national security of the United States.

The 50 Minerals Critical to U.S. Security
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.
The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.
In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.
What are Critical Minerals?
A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.
In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.
Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.
Mineral | Example Uses | Net Import Reliance |
---|---|---|
Beryllium | Alloying agent in aerospace, defense industries | 11% |
Aluminum | Power lines, construction, electronics | 13% |
Zirconium | High-temparature ceramics production | 25% |
Palladium | Catalytic converters | 40% |
Germanium | Fiber optics, night vision applications | 50% |
Lithium | Rechargeable batteries | 50% |
Magnesium | Alloys, electronics | 50% |
Nickel | Stainless steel, rechargeable batteries | 50% |
Tungsten | Wear-resistant metals | 50% |
Barite | Hydrocarbon production | 75% |
Chromium | Stainless steel | 75% |
Tin | Coatings, alloys for steel | 75% |
Cobalt | Rechargeable batteries, superalloys | 76% |
Platinum | Catalytic converters | 79% |
Antimony | Lead-acid batteries, flame retardants | 81% |
Zinc | Metallurgy to produce galvanized steel | 83% |
Titanium | White pigment, metal alloys | 88% |
Bismuth | Medical, atomic research | 94% |
Tellurium | Solar cells, thermoelectric devices | 95% |
Vanadium | Alloying agent for iron and steel | 96% |
Arsenic | Semi-conductors, lumber preservatives, pesticides | 100% |
Cerium | Catalytic converters, ceramics, glass, metallurgy | 100% |
Cesium | Research, development | 100% |
Dysprosium | Data storage devices, lasers | 100% |
Erbium | Fiber optics, optical amplifiers, lasers | 100% |
Europium | Phosphors, nuclear control rods | 100% |
Fluorspar | Manufacture of aluminum, cement, steel, gasoline | 100% |
Gadolinium | Medical imaging, steelmaking | 100% |
Gallium | Integrated circuits, LEDs | 100% |
Graphite | Lubricants, batteries | 100% |
Holmium | Permanent magnets, nuclear control rods | 100% |
Indium | Liquid crystal display screens | 100% |
Lanthanum | Catalysts, ceramics, glass, polishing compounds | 100% |
Lutetium | Scintillators for medical imaging, cancer therapies | 100% |
Manganese | Steelmaking, batteries | 100% |
Neodymium | Rubber catalysts, medical, industrial lasers | 100% |
Niobium | Steel, superalloys | 100% |
Praseodymium | Permanent magnets, batteries, aerospace alloys | 100% |
Rubidium | Research, development in electronics | 100% |
Samarium | Cancer treatment, absorber in nuclear reactors | 100% |
Scandium | Alloys, ceramics, fuel cells | 100% |
Tantalum | Electronic components, superalloys | 100% |
Terbium | Permanent magnets, fiber optics, lasers | 100% |
Thulium | Metal alloys, lasers | 100% |
Ytterbium | Catalysts, scintillometers, lasers, metallurgy | 100% |
Yttrium | Ceramic, catalysts, lasers, metallurgy, phosphors | 100% |
Iridium | Coating of anodes for electrochemical processes | No data available |
Rhodium | Catalytic converters, electrical components | No data available |
Ruthenium | Electrical contacts, chip resistors in computers | No data available |
Hafnium | Nuclear control rods, alloys | Net exporter |
The challenge for the U.S. is that the local production of these raw materials is extremely limited.
For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.
At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.
China’s Dominance in Minerals
Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.
Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.
Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.
After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.
The Rising Demand for Critical Minerals
As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.
According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.
The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.
Energy
Visualizing China’s Dominance in Clean Energy Metals
Despite being the world’s biggest carbon emitter, China is also a key producer of most of the critical minerals for the green revolution.

Visualizing China’s Dominance in Clean Energy Metals
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
Renewable sources of energy are expected to replace fossil fuels over the coming decades, and this large-scale transition will have a downstream effect on the demand of raw materials. More green energy means more wind turbines, solar panels, and batteries needed, and more clean energy metals necessary to build these technologies.
This visualization, based on data from the International Energy Agency (IEA), illustrates where the extraction and processing of key metals for the green revolution take place.
It shows that despite being the world’s biggest carbon polluter, China is also the largest producer of most of the world’s critical minerals for the green revolution.
Where Clean Energy Metals are Produced
China produces 60% of all rare earth elements used as components in high technology devices, including smartphones and computers.
The country also has a 13% share of the lithium production market, which is still dominated by Australia (52%) and Chile (22%). The highly reactive element is key to producing rechargeable batteries for mobile phones, laptops, and electric vehicles.
China's Share | Extraction | Processing |
---|---|---|
Copper | 8% | 40% |
Nickel | 5% | 35% |
Cobalt | 1.5% | 65% |
Rare Earths | 60% | 87% |
Lithium | 13% | 58% |
But even more than extraction, China is the dominant economy when it comes to processing operations. The country’s share of refining is around 35% for nickel, 58% for lithium, 65% for cobalt, and 87% for rare earth elements.
Despite being the largest economy in the world, the U.S. does not appear among the largest producers of any of the metals listed. To shorten the gap, the Biden administration recently launched an executive order to review the American strategy for critical and strategic materials.
It’s also worth noting that Russia also does not appear among the top producers when it comes to clean energy metals, despite being one of the world’s leading producers of minerals like copper, iron, and palladium.
Low Regulation in the Clean Metal Supply Chain
While China leads all countries in terms of cobalt processing, the metal itself is primarily extracted in the Democratic Republic of Congo (DRC). Still, Chinese interests own 15 of the 17 industrial cobalt operations in the DRC, according to a data analysis by The New York Times and Benchmark Mineral Intelligence.
Unfortunately, the DRC’s cobalt production has been criticized due to reports of corruption and lack of regulation.
Part of the Congolese cobalt comes from artisanal mines with low regulation. Of the 255,000 Congolese artisanal miners, an estimated 40,000 are children, some as young as six years old.
The Rise of Clean Energy Metals
The necessary shift from fossil fuels to renewable energy opens up interesting questions about how geopolitics, and these supply chains, will be affected.
In the race to secure raw materials needed for the green revolution, new world powers could emerge as demand for clean energy metals grows.
For now, China has the lead.
-
Misc6 days ago
The Top 10 Largest Nuclear Explosions, Visualized
-
Technology3 weeks ago
How Do Big Tech Giants Make Their Billions?
-
Markets4 weeks ago
Satellite Maps: Shanghai’s Supply Chain Standstill
-
Energy2 weeks ago
Mapped: Solar and Wind Power by Country
-
Datastream3 weeks ago
Visualizing Companies with the Most Patents Granted in 2021
-
Technology1 week ago
Synthetic Biology: The $3.6 Trillion Science Changing Life as We Know It
-
Markets3 weeks ago
Why Investors Tuned Out Netflix
-
Automotive3 weeks ago
Timeline: The Rise, Fall, and Return of the Hummer