Connect with us

Mining

How Canada’s Mining Sector Impacts the Economy

Published

on

Canada is a mining nation.

From the Rockies to the Canadian Shield, and from the Plains and to the North, the variety of geology that exists in the country is immense – and this has created a large and unique opportunity for groundbreaking mineral discoveries.

As a result, Canada is one of the world’s largest exporters of minerals and metals, supplying approximately 60 different mineral commodities to over 100 countries.

An Intro to Canadian Mining

Today’s infographic comes to us from Canadian Minerals and Metals Plan and it highlights an industry that has given Canada a competitive advantage in the global economy.

How Canada's Mining Sector Impacts the Economy

The mineral sector brings jobs, investment, and business to Canada.

This impact stems from the whole lifecycle of mining, including exploration, extraction, primary processing, design, and manufacturing processes.

Economic Impact

Last year, the minerals sector contributed $72 billion to Canada’s GDP.

Here are the major minerals produced in Canada in 2017, along with their dollar value:

RankMineralValue (2017)Production (2017)
#1Gold$8,700,000,000164,313 kg
#2Coal$6,200,000,00059,893,000 tonnes
#3Copper$4,700,000,000584,000 tonnes
#4Potash$4,600,000,00012,214,000 tonnes
#5Iron Ore$3,800,000,00049,009,000 tonnes
#6Nickel$2,700,000,000201,000 tonnes
#7Diamonds$2,600,000,00022,724,000 karats

According to S&P Global Market Intelligence, more non-ferrous mineral exploration dollars come to Canada than to any other country. In 2017, roughly $1.1 billion – or about 14% of global exploration spending – was allocated to Canada, which edged out Australia for the top spot globally.

Mining and Communities

From mining in remote communities to the legal and financial activities in urban centers such as Vancouver or Toronto, mining touches all Canadian communities.

According to a study commissioned by the Ontario Mining Association, the economic impact of one new gold mine in Ontario can create ~4,000 jobs during construction and production, and can contribute $38 to $43 million to the economy once operating.

Further, more than 16,500 Indigenous peoples were employed in the mineral sector in 2016, accounting for 11.6% of the mining industry labor force, making it the second largest private sector employee.

Innovation Drives Canadian Mining

Canada has an established network of academic thinkers, business associations, financial capital, and government programs that support and promote new technologies that can help set a standard for mining worldwide.

Here are a few examples of innovation at work:

  1. CanmetMINING is currently researching the implementation of hydrogen power to replace the use of diesel fuel in operating underground mines. Once this technology adopted, it could reduce the GHG emission footprint of underground mines by 25% and improve the health of workers in mines by reducing their exposure to diesel exhaust.
  2. New technology is turning what was once mine waste into a potential source for minerals. In the past three decades, six billion tonnes of mine tailings have accumulated with a potential value of US$10 billion. Reprocessing this waste can produce significant recoveries of rare earth elements, gold, nickel, cobalt and other valuable minerals.
  3. Artificial intelligence and new remote-control technology can be deployed to operate mining equipment and find new discoveries.

All these innovations are going to change the nature of working in mines, while creating high-paid jobs and demand for an educated labor force.

Opportunity for Future Generations

A large number of Canadian miners are expected to retire over the next decade. In fact, Canada’s Mining Industry Human Resources Council (MiHR) forecasts 87,830 workers at a minimum will have to be hired over the next ten years.

With game-changing technologies on the horizon, there will be plenty of opportunities for a new generation of high-tech miners. The future bodes well for Canadian mining.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

 

Continue Reading
Comments

Batteries

Visualizing Copper’s Role in the Transition to Clean Energy

A clean energy transition is underway as wind, solar, and batteries take center stage. Here’s how copper plays the critical role in these technologies.

Published

on

A future powered by renewables is not in the distant horizon, but rather in its early hours.

This new dawn comes from a global awareness of the environmental impacts of the current energy mix, which relies heavily on fossil fuels and their associated greenhouse gas emissions.

Technologies such as wind, solar, and batteries offer renewable and clean alternatives and are leading the way for the transition to clean energy. However, as with every energy transition, there are not only new technologies, but also new material demands.

Copper: A Key Piece of the Puzzle

This energy transition will be mineral intensive and it will require metals such as nickel, lithium, and cobalt. However, one metal stands out as being particularly important, and that is copper.

Today’s infographic comes to us from the Copper Development Association and outlines the special role of copper in renewable power generation, energy storage, and electric vehicles.

Copper and the Clean Energy Transition

Why Copper?

The red metal has four key properties that make it ideal for the clean energy transition.

  1. Conductivity
  2. Ductility
  3. Efficiency
  4. Recyclability

It is these properties that make copper the critical material for wind and solar technology, energy storage, and electric vehicles.

It’s also why, according to ThinkCopper, the generation of electricity from solar and wind uses four to six times more copper than fossil fuel sources.

Copper in Wind

A three-megawatt wind turbine can contain up to 4.7 tons of copper with 53% of that demand coming from the cable and wiring, 24% from the turbine/power generation components, 4% from transformers, and 19% from turbine transformers.

The use of copper significantly increases when going offshore. That’s because onshore wind farms use approximately 7,766 lbs of copper per MW, while an offshore wind installation uses 21,068 lbs of copper per MW.

It is the cabling of the offshore wind farms to connect them to each other and to deliver the power that accounts for the bulk of the copper usage.

Copper in Solar

Solar power systems can contain approximately 5.5 tons of copper per MW. Copper is in the heat exchangers of solar thermal units as well as in the wiring and cabling that transmits the electricity in photovoltaic solar cells.

Navigant Research projects that 262 GW of new solar installations between 2018 and 2027 in North America will require 1.9 billion lbs of copper.

Copper in Energy Storage

There are many ways to store energy, but every method uses copper. For example, a lithium ion battery contains 440 lbs of copper per MW and a flow battery 540 lbs of copper per MW.

Copper wiring and cabling connects renewable power generation with energy storage, while the copper in the switches of transformers help to deliver power at the right voltage.

Across the United States, a total of 5,752 MW of energy capacity has been announced and commissioned.

Copper in Electric Vehicles

Copper is at the heart of the electric vehicle (EV). This is because EVs rely on copper for the motor coil that drives the engine.

The more electric the car, the more copper it needs; a car powered by an internal combustion engine contains roughly 48 lbs, a hybrid needs 88 lbs, and a battery electric vehicle uses 184 lbs.

Additionally, the cabling for charging stations of electric vehicles will be another source of copper demand.

The Copper Future

Advances in technologies create new material demands.

Therefore, it shouldn’t be surprising that the transition to renewables is going to create demand for many minerals – and copper is going to be a critical mineral for the new era of energy.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Economy

Visualizing the Potential of Smart Mining

Smart mining technology is helping to enhance safety, increase production, and optimize resources by analyzing large swaths of real-time data.

Published

on

Visualizing the Potential of Smart Mining

View the full-size version of the infographic by clicking here

Mining has traditionally been depicted with pack mules, pickaxes, and rugged prospectors.

However, it may surprise you to learn that today’s mining industry is precisely the opposite in almost every respect. It’s high-tech, efficient, and safe.

This is partially because modern mining companies are deploying the latest in sensor and cloud technology. These connected mines are improving the extraction process and workers’ safety while also boosting productivity.

Today’s infographic comes to us from Natural Resources Canada and discusses how this sensor and cloud technology can be integrated into the extractive process.

What is Smart Mining?

A connected mine uses data from sensor technology to effectively manage underground and pit mining operations.

“Any mining operation today will have in the thousands or hundreds of thousands of sensors capturing in real time a vast swath of data.”

– Mukani Moyo, McKinsey Senior Expert (Source)

From a single application on a mobile device, supervisors at mine sites can now receive alerts via SMS, email or in-app notifications. This helps them react to critical problems in real-time and maximize productivity.

In addition, advanced data analytics can be applied to the raw data to create insights, visualizations, and recommendations. This information is delivered to mine managers and employees in real-time on their mobile devices.

Case Study: Smart Solutions in Practice

Dundee Precious Metals was one of the first companies to bring wireless networks into an underground mine. The company used RFID and Wi-Fi to monitor the location of equipment and people. The networks also allowed personnel to stay connected to the surface.

Once the networks were installed, communication was reliable and instantaneous – even almost 2,000 feet underground at the bottom of the mine. Workers could bring laptops and smartphones into the mine to stay connected to personnel and software on the surface.

With an RFID chip on every vehicle, machine, and person, managers can see the location of everyone and everything in the mine. This helps prevent accidents and breakdowns, and streamlines operations in real-time.

There are also environmental and cost-saving benefits. Using location data, an automated ventilation system can respond and minimize energy consumption.

Fans turn on and off as miners enter or leave an area. In addition, fan speeds adjust when machines or vehicles are running nearby to ensure that emissions are properly vented. This could drastically reduce a mine’s energy requirements.

Changing the Nature of Work: Remote Working

These smart mining solutions are reducing the risks miners face and creating new opportunities for a tech-savvy generation.

Remote mine locations that revolve around shift work can place stress on workers and their families. With a connected infrastructure, mine employees and managers can monitor operations at a distant office.

There will always be a need for workers on site, but connected technology can create some town-based career opportunities and help stabilize families.

A Sustainable Future for Mining

This is just the beginning.

Over time, data from sensor technology and cloud software, will reveal insights that could help develop sustainable mining operations.

By minimizing their negative impacts, mining companies will be able to responsibly deliver the materials the modern world needs.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
True LeafCompany Spotlight

Subscribe

Join the 100,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular