Connect with us

Technology

Long Waves: The History of Innovation Cycles

Published

on

Innovation Cycles

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Long Waves: How Innovation Cycles Influence Growth

Creative destruction plays a key role in entrepreneurship and economic development.

Coined by economist Joseph Schumpeter in 1942, the theory of “creative destruction” suggests that business cycles operate under long waves of innovation. Specifically, as markets are disrupted, key clusters of industries have outsized effects on the economy.

Take the railway industry, for example. At the turn of the 19th century, railways completely reshaped urban demographics and trade. Similarly, the internet disrupted entire industries—from media to retail.

The above infographic shows how innovation cycles have impacted economies since 1785, and what’s next for the future.

Innovation Cycles: The Six Waves

From the first wave of textiles and water power in the industrial revolution, to the internet in the 1990s, here are the six waves of innovation and their key breakthroughs.

First WaveSecond WaveThird WaveFourth WaveFifth WaveSixth Wave
Water Power
Textiles
Iron
Steam
Rail
Steel
Electricity
Chemicals
Internal-Combustion Engine
Petrochemicals
Electronics
Aviation
Digital Network
Software
New Media
Digitization (AI, IoT, AV,
Robots & Drones)
Clean Tech
60 years55 years50 years40 years30 years25 years

Source: Edelsen Institute, Detlef Reis

During the first wave of the Industrial Revolution, water power was instrumental in manufacturing paper, textiles, and iron goods. Unlike the mills of the past, full-sized dams fed turbines through complex belt systems. Advances in textiles brought the first factory, and cities expanded around them.

With the second wave, between about 1845 and 1900, came significant rail, steam, and steel advancements. The rail industry alone affected countless industries, from iron and oil to steel and copper. In turn, great railway monopolies were formed.

The emergence of electricity powering light and telephone communication through the third wave dominated the first half of the 1900s. Henry Ford introduced the Model T, and the assembly line transformed the auto industry. Automobiles became closely linked with the expansion of the American metropolis. Later, in the fourth wave, aviation revolutionized travel.

After the internet emerged by the early 1990s, barriers to information were upended. New media changed political discourse, news cycles, and communication in the fifth wave. The internet ushered in a new frontier of globalization, a borderless landscape of digital information flows.

Market Power

To the economist Schumpeter, technological innovations boosted economic growth and improved living standards.

However, these disruptors can also have a tendency to lead to monopolies. Especially during a cycle’s upswing, the strongest players realize wide margins, establish moats, and fend off rivals. Typically, these cycles begin when the innovations become of general use.

Of course, this can be seen today—never has the world been so closely connected. Information is more centralized than it has ever been, with Big Tech dominating global search traffic, social networks, and advertising.

Like the Big Tech behemoths of today, the rail industry had the power to control prices and push out competitors during the 19th century. At the peak, listed shares of rail companies on the New York Stock Exchange made up 60% of total stock market capitalization.

Waves of Change

As cycle longevity continues to shorten, the fifth wave may have a few years left under its belt.

The sixth wave, marked by artificial intelligence and digitization across information of things (IoT), robotics, and drones, will likely paint an entirely new picture. Namely, the automation of systems, predictive analytics, and data processing could make an impact. In turn, physical goods and services will likely be digitized. The time to complete tasks could shift from hours to even seconds.

At the same time, clean tech could come to the forefront. At the heart of each technological innovation is solving complex problems, and climate concerns are becoming increasingly pressing. Lower costs in solar PV and wind are also predicating efficiency advantages.

Click for Comments

Technology

Charting the Next Generation of Internet

In this graphic, Visual Capitalist has partnered with MSCI to explore the potential of satellite internet as the next generation of internet innovation.

Published

on

Teaser image of a bubble chart showing the large addressable market of satellite internet.

Published

on

The following content is sponsored by MSCI

Could Tomorrow’s Internet be Streamed from Space?

In 2023, 2.6 billion people could not access the internet. Today, companies worldwide are looking to innovative technology to ensure more people are online at the speed of today’s technology. 

Could satellite internet provide the solution?  

In collaboration with MSCI, we embarked on a journey to explore whether tomorrow’s internet could be streamed from space. 

Satellite Internet’s Potential Customer Base

Millions of people live in rural communities or mobile homes, and many spend much of their lives at sea or have no fixed abode. So, they cannot access the internet simply because the technology is unavailable. 

Satellite internet gives these communities access to the internet without requiring a fixed location. Consequently, the volume of people who could get online using satellite internet is significant:

AreaPotential Subscribers
Households Without Internet Access600,000,000
RVs 11,000,000
Recreational Boats8,500,000
Ships100,000
Commercial Aircraft25,000

Advances in Satellite Technology

Satellite internet is not a new concept. However, it has only recently been that roadblocks around cost and long turnaround times have been overcome.

NASA’s space shuttle, until it was retired in 2011, was the only reusable means of transporting crew and cargo into orbit. It cost over $1.5 billion and took an average of 252 days to launch and refurbish. 

In stark contrast, SpaceX’s Falcon 9 can now launch objects into orbit and maintain them at a fraction of the time and cost, less than 1% of the space shuttle’s cost.

Average Rocket Turnaround TimeAverage Launch/Refurbishment Cost
Falcon 9*21 days< $1,000,000
Space Shuttle252 days$1,500,000,000 (approximately)

Satellites are now deployed 300 miles in low Earth orbit (LEO) rather than 22,000 miles above Earth in Geostationary Orbit (GEO), previously the typical satellite deployment altitude.

What this means for the consumer is that satellite internet streamed from LEO has a latency of 40 ms, which is an optimal internet connection. Especially when compared to the 700 ms stream latency experienced with satellite internet streamed from GEO. 

What Would it Take to Build a Satellite Internet?

SpaceX, the private company that operates Starlink, currently has 4,500 satellites. However, the company believes it will require 10 times this number to provide comprehensive satellite internet coverage.

Charting the number of active satellites reveals that, despite the increasing number of active satellites, many more must be launched to create a comprehensive satellite internet. 

YearNumber of Active Satellites
20226,905
20214,800
20203,256
20192,272
20182,027
20171,778
20161,462
20151,364
20141,262
20131,187

Next-Generation Internet Innovation

Innovation is at the heart of the internet’s next generation, and the MSCI Next Generation Innovation Index exposes investors to companies that can take advantage of potentially disruptive technologies like satellite internet. 

You can gain exposure to companies advancing access to the internet with four indexes: 

  • MSCI ACWI IMI Next Generation Internet Innovation Index
  • MSCI World IMI Next Generation Internet Innovation 30 Index
  • MSCI China All Shares IMI Next Generation Internet Innovation Index
  • MSCI China A Onshore IMI Next Generation Internet Innovation Index

MSCI thematic indexes are objective, rules-based, and regularly updated to focus on specific emerging trends that could evolve.

Visual Capitalist Logo

Click here to explore the MSCI thematic indexes

You may also like

Visualizing Asia's Water Dilemma

Subscribe

Continue Reading
Voronoi, the app by Visual Capitalist. Where data tells the story. Download on App Store or Google Play

Subscribe

Popular