Infographic: The World's 25 Largest Lakes, Side by Side
Connect with us

Green

The World’s 25 Largest Lakes, Side by Side

Published

on

The World's 25 Largest Lakes, Side by Side

The World’s 25 Largest Lakes, Side by Side

In many parts of the world, you don’t have to look very far to find a lake.

According to satellite data, there are roughly 100 million lakes larger than one hectare (2.47 acres) to be found globally. The largest lakes, which rival the size of entire nations, are more of a rarity.

One might expect the world’s largest lakes to be very alike, but from depth to saline content, their properties can be quite different. As well, the ranking of the world’s largest lakes is far from static, as human activity can turn a massive body of water into a desert within a single generation.

Today’s graphic – created using the fantastic online tool, Slap It On A Map! – uses the Great Lakes region as a point of comparison for the largest 25 lakes, by area. This is particularly useful in comparing the scale of lakes that are located in disparate parts of the globe.

The Greatest Lakes

The largest lake in the world by a long shot is the Caspian Sea – a name that hints at a past when it was contiguous with the ocean around 11 million years ago. This massive saline lake, which is nearly the same size as Japan, borders five countries: Kazakhstan, Russia, Turkmenistan, Azerbaijan, and Iran. An estimated 48 billion barrels of oil lay beneath the surface of the basin.

The five Great Lakes, which run along the Canada–U.S. border, form one of the largest collections of fresh water on Earth. This interconnected series of lakes represents around 20% of the world’s fresh water and the region supports over 100 million people, roughly equal to one-third of the Canada–U.S. population.

Amazingly, a single lake holds as much fresh water as all the Great Lakes combined – Lake Baikal. This rift lake in Siberia has a maximum depth of 5,371ft (1,637m). For comparison, the largest of the Great Lakes (Lake Superior) is only 25% as deep, with a maximum depth of 1,333ft (406m). Lake Baikal is unique in a number of other ways too. It is the world’s oldest, coldest lake, and around 80% of its animal species are endemic (not found anywhere else).

Here’s a full run-down of the top 25 lakes by area:

RankLake NameSurface AreaTypeCountries on shoreline
1Caspian Sea143,000 sq mi
(371,000km²)
Saline🇰🇿 Kazakhstan
🇷🇺 Russia
🇹🇲 Turkmenistan
🇦🇿 Azerbaijan
🇮🇷 Iran
2Superior31,700 sq mi
(82,100km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
3Victoria26,590 sq mi
(68,870km²)
Freshwater🇺🇬 Uganda
🇰🇪 Kenya
🇹🇿 Tanzania
4Huron23,000 sq mi
(59,600km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
5Michigan22,000 sq mi
(58,000km²)
Freshwater🇺🇸 U.S.
6Tanganyika12,600 sq mi
(32,600km²)
Freshwater🇧🇮 Burundi
🇹🇿 Tanzania
🇿🇲 Zambia
🇨🇩 D.R.C.
7Baikal12,200 sq mi
(31,500km²)
Freshwater🇷🇺 Russia
8Great Bear Lake12,000 sq mi
(31,000km²)
Freshwater🇨🇦 Canada
9Malawi11,400 sq mi
(29,500km²)
Freshwater🇲🇼 Malawi
🇲🇿 Mozambique
🇹🇿 Tanzania
10Great Slave Lake10,000 sq mi
(27,000km²)
Freshwater🇨🇦 Canada
11Erie9,900 sq mi
(25,700km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
12Winnipeg9,465 sq mi
(24,514km²)
Freshwater🇨🇦 Canada
13Ontario7,320 sq mi
(18,960km²)
Freshwater🇨🇦 Canada
🇺🇸 U.S.
14Ladoga7,000 sq mi
(18,130km²)
Freshwater🇷🇺 Russia
15Balkhash6,300 sq mi
(16,400km²)
Saline🇰🇿 Kazakhstan
16Vostok4,800 sq mi
(12,500km²)
Freshwater🇦🇶 Antarctica
17Onega3,700 sq mi
(9,700km²)
Freshwater🇷🇺 Russia
18Titicaca3,232 sq mi
(8,372km²)
Freshwater🇧🇴 Bolivia
🇵🇪 Peru
19Nicaragua3,191 sq mi
(8,264km²)
Freshwater🇳🇮 Nicaragua
20Athabasca3,030 sq mi
(7,850km²)
Freshwater🇨🇦 Canada
21Taymyr2,700 sq mi
(6,990km²)
Freshwater🇷🇺 Russia
22Turkana2,473 sq mi
(6,405km²)
Saline🇰🇪 Kenya
🇪🇹 Ethiopia
23Reindeer Lake2,440 sq mi
(6,330km²)
Freshwater🇨🇦 Canada
24Issyk-Kul2,400 sq mi
(6,200km²)
Saline🇰🇬 Kyrgyzstan
25Urmia2,317 sq mi
(6,001km²)
Saline🇮🇷 Iran

The Great Lakes World Tour

For people living in Canada and the U.S., the shape and relative size of the Great Lakes system may be quite familiar. This makes the Great Lakes a fantastic point of comparison to help put the size of other world locations into perspective. To this end, we begin our Great Lakes World Tour.

First, the image below shows how the Great Lakes system would look if it was located in India.

great lakes compared with india

Distortions on commonly used maps can downplay the size of India compared to more northern nations. This view of the Great Lakes can help put India’s true size into perspective.

Next, we look at the Great Lakes overlaid within Central Europe.

great lakes compared with europe

In the context of Europe, the lakes are so large that they extend from the Netherlands over to Slovakia. Lake Superior’s surface area of 31,700 mi2 (82,000 km2), is similar in size to Austria. Here’s are the five Great Lakes and European countries of equivalent size:

Great LakesSurface AreaEquivalent CountryArea
Lake Superior82,000 km2 (31,700 sq mi)🇦🇹 Austria83,879 km2 (32,386 sq mi)
Lake Huron60,000 km2 (23,000 sq mi)🇱🇻 Latvia64,589 km2 (24,938 sq mi)
Lake Michigan58,000 km2 (22,300 sq mi)🇭🇷 Croatia56,594 km2 (21,851 sq mi)
Lake Erie25,700 km2 (9,910 sq mi)🇲🇰 North Macedonia25,713 km2 (9,928 sq mi)
Lake Ontario19,000 km2 (7,340 sq mi)🇸🇮 Slovenia20,271 km2 (7,827 sq mi)

Lastly, here is a look at the Great Lakes in Southern Australia. Australia is the world’s 6th largest country, so the Great Lakes only occupy one corner of its land mass.

great lakes compared with Australia

Australia’s lack of glacial history means that there are few permanent freshwater lakes in the country. Many of the country’s largest lakes only fill up during periods of excessive rainfall.

Shrinking out of the rankings

Not far from the world’s largest lake, straddling the border between Kazakhstan and Uzbekistan, lay the sand dunes of the Aralkum Desert. In the not so distant past, this harsh environment was actually the bed of one of the largest lakes in the world – the Aral Sea.

Aral Sea receding 1960 2020

For reasons both climatic and anthropogenic, the Aral Sea began receding in the 1960s. This dramatic change in surface area took the Aral Sea from the fourth largest lake on Earth to not even ranking in the top 50. Researchers note that the size of the lake has fluctuated a lot over history, but through the lens of modern history these recent changes happened rapidly, leaving local economies devastated and former shoreside towns landlocked.

Lake Chad, in Saharan Africa, and Lake Urmia, in Iran, both face similar challenges, shrinking dramatically in recent decades.

How we work to reverse damage and avoid ecosystem collapse in vulnerable lakes will have a big influence on how the top 25 list may look in future years.

Subscribe to Visual Capitalist
Click for Comments

Environment

Animation: Visualizing 140 Years of Global Surface Temperatures

Here’s a look at 140 years of global surface temperatures, highlighting the ten coldest and warmest years since 1880.

Published

on

Average surface temperature since 1800

Average surface temperatures since 1800

Animated: 140 Years of Global Surface Temperatures

For hundreds of years, Earth’s average surface temperature has been steadily increasing. And over the last decade, this global heating appears to have intensified.

Since 1880, the global average temperature has risen by an average of 0.08°C (0.14°F) every 10 years, according to the National Oceanic and Atmospheric Administration (NOAA).

But since 1981, warming has been occurring at more than twice that rate, by about 0.18°C (0.32°F) per decade.

This graphic by Pablo Alvarez shows 140 years of global surface temperatures, highlighting the 10 coldest and warmest years from 1880-2021 using data from NOAA.

Global Surface Temperatures Over Time

Over the last century and a half, there have been fluctuations in global surface temperatures, with some of the coolest years on record occurring in the late 19th century and early 20th century.

Average surface temperature since 1800

However, the last two decades have seen unprecedented warming, with the 10 warmest years on record all occurring within the last 20 years. Here’s a look at the 10 hottest years since 1800, and how they compared to the 20th century average:

The 10 Warmest Years

RankYearDeviation from 20th Century Avg. (°C)
#12016+0.99
#22020+0.97
#32019+0.94
#42015+0.93
#52017+0.9
#62018+0.82
#72014+0.74
#82010+0.72
#92013+0.67
#102005+0.66

As of this article’s publication, the warmest year on record was 2016, when temperatures were +0.99°C (1.78°F) above the 20th century average. After 2016, the second warmest year was 2020, when surface temperatures reached +0.97°C (1.75°F) higher than the previous century’s average.

What Factors Impact Earth’s Climate?

There are a number of natural factors that influence global surface temperatures, including phenomena such as:

  • Volcanic activity
  • Changes in the Earth’s orbit
  • Shifts in ocean currents

However, scientists believe that our current rate of warming has been undoubtedly caused by human influence, especially because of our carbon and other greenhouse gas (GHG) emissions.

According to the most recent report by the Intergovernmental Panel on Climate Change (IPCC), “observed increases in well-mixed greenhouse gas (GHG) concentrations since around 1750 are unequivocally caused by human activities.”

In other words, while Earth’s surface temperature naturally fluctuates over the years, our actions have undoubtedly contributed to recent changes in Earth’s climate.

What Are The Consequences?

We’re already seeing the impact of this warming, as the world struggles with extreme climate events like droughts, heatwaves, floods, and an influx of wildfires in places like Europe, the United States, and Australia.

These extreme weather patterns could become the new normal if left unchecked, which is why companies and policymakers around the world are embarking on different solutions—from targeting net zero goals to implementing technological innovations that could reduce emissions.

Continue Reading

Energy

The U.S. Utilities Decarbonization Index

This graphic quantifies and compares the state of decarbonization among the 30 largest investor-owned utilities in the United States.

Published

on

decarbonization index
The NPUC Annual Utility Decarbonization Report

Introducing the NPUC Annual Utility Decarbonization Report 2022
Created in partnership by Visual Capitalist and Motive Power.

Download the Free Report
decarbonization index

The U.S. Utilities Decarbonization Index

With the Biden administration targeting a zero-emissions power sector for the U.S. by 2035, how are the nation’s largest electric power providers faring in terms of decarbonization? 

Together, Visual Capitalist and our sponsor National Public Utilities Council have developed the Annual Utility Decarbonization Index. The index quantifies and compares the status of decarbonization among the 30 largest investor-owned utilities in the United States.

Decarbonization is quantified by scoring companies on six emissions-related metrics based on publicly available data from 2020 (the latest available).

Why the 30 Largest IOUs?

Why does the Decarbonization Index specifically look at the 30 largest IOUs by electricity generation? 

Well, these 30 utilities collectively generated around 2.3 billion megawatt hours (MWh) of electricity (including purchased power), making up over half of U.S. net electricity generation in 2020. Moreover, they also served over 90 million customers, accounting for roughly 56% of all electric customers in the country.

30 largest utilities in the U.S.

Therefore, it’s safe to say that the 30 largest IOUs have an important role in decarbonizing both the power sector and the U.S. economy. Since the residential, commercial, industrial, and agricultural sectors all use electricity, the decarbonization of utilities—the providers of electric power—can enable emissions reduction throughout the economy.

Decarbonization Index Methodology

For each of the six metrics used in the Decarbonization Index, utilities are scored on a scale of 1 (lowest) to 5 (highest), indicating whether they are trailing or leading, respectively. Scores for each metric are based on the range of figures for each metric divided into five equal buckets that the utilities fall into. 

For simplicity, let’s suppose that the lowest reported total emissions figure is zero metric tons of carbon dioxide (CO2) and the highest is 100 metric tons. In that case, companies that emit fewer than 20 metric tons of CO2 will receive the highest score of 5. Those that emit between 20 and 40 metric tons of CO2 will receive a 4, and so on.

A utility’s overall decarbonization score is an average of their scores across the six metrics, summarized below:

  1. Fuel Mix:
    The share of low-carbon sources (renewables, nuclear, and fuel cells) in the utility’s owned net electricity generation. We’ve assumed that the share of low-carbon sources can range from 0% to 100%, and scores are assigned based on that range.
  2. CO2 Emissions Intensity:
    The amount of CO2 emitted per megawatt-hour of owned and purchased electricity generation.
  3. Total CO2 Emissions:
    The sum of absolute CO2 emissions from owned and purchased electricity generation. While this overlooks the differing sizes of utilities, the rationale is that smaller unconsolidated utilities may find it easier to decarbonize than larger peers.
  4. CO2 Emissions per Capita:
    The amount of CO2 emitted from owned and purchased electricity generation per retail customer served in 2020.
  5. Decarbonization Goals:
    An evaluation of the utility’s interim greenhouse gas (GHG) emissions reduction goals and net-zero targets. The baseline for this is 50% GHG emissions reduction by 2030 and net-zero emissions by 2050 (utilities with baseline targets get a score of 2.5/5).
  6. Low-Carbon Investment:
    The share of planned capital expenditure (CAPEX) for electricity generation that is allocated to low-carbon sources. We’ve assumed that the share of CAPEX for low-carbon sources can range from 0% to 100%, and scores are assigned based on that range.

The data for these metrics comes from various sources including company sustainability reports, quantitative reporting templates from the Edison Electric Institute, and the Climate Disclosure Project’s Climate Change Questionnaire filings.

Explore all six metrics of the U.S. Utility Decarbonization Index

NPUC Annual Utility Decarbonization Report

Download The NPUC Annual Utility Decarbonization Report for free.

The Annual Utility Decarbonization Index 2022

Before looking at numbers, it’s important to note that the Decarbonization Index is relative and compares the 30 largest IOUs to each other. Therefore, a score of 5 does not indicate full decarbonization or net-zero emissions. Instead, it suggests that the utility is doing particularly well relative to its peers. 

With that in mind, here’s a look at the Annual Utility Decarbonization Index 2022: 

Rank
CompanyDecarbonization Score
#1Public Service Enterprise Group4.7
#2NextEra Energy Resources4.7
#3Pacific Gas and Electric4.5
#4Avangrid4.2
#5Exelon4.1
#6Portland General Electric3.7
#7Dominion Energy3.6
#8Florida Power and Light3.6
#9PNM Resources3.5
#10Alliant Energy3.4
#11Consolidated Edison3.4
#12Fortis Inc.3.4
#13American Electric Power3.3
#14Consumers Energy3.3
#15Evergy3.0
#16NRG Energy3.0
#17AES Corporation2.9
#18Xcel Energy2.9
#19WEC Energy2.9
#20DTE Energy2.8
#21Duke Energy2.8
#22Entergy2.8
#23TransAlta2.8
#24Emera2.7
#25Ameren2.6
#26Berkshire Hathaway Energy2.5
#27Oklahoma Gas & Electric Company2.4
#28Southern Company2.3
#29PPL Corporation2.2
#30Vistra Corp.2.0

A small number of companies did not report data on certain metrics and have been excluded from scoring for those metrics (denoted as N/A). In such cases, the decarbonization score is an average of five metrics instead of six.

Public Service Enterprise Group (PSEG), headquartered in New Jersey, tops this year’s rankings thanks to its low-emissions profile and ambitious climate goals. The company is aiming to achieve net-zero emissions from operations by 2030—five years ahead of the Biden Administration’s target and faster than any other utility on the list.

Tied with PSEG is NextEra Energy Resources, the clean energy-focused subsidiary of NextEra Energy. The company is the world’s largest producer of solar and wind power and generated 97% of its net electricity from low-carbon sources in 2020.

In third place is California’s largest utility, the Pacific Gas and Electric Company (PG&E). PG&E had the lowest emissions per capita of the 30 largest IOUs at 0.5 metric tons of CO2 per retail customer in 2020. That figure is significantly lower than the average of 11.5 metric tons across the 30 IOUs. 

Rounding out the top five are Avangrid, a renewables-focused U.S. subsidiary of the Spanish Iberdrola Group, and Exelon, the nation’s largest utility by number of retail customers. Avangrid had one of the cleanest fuel mixes with 87% of its owned net electricity coming from low-carbon sources. Exelon is the nation’s largest provider of emissions-free electricity, generating around 157 million MWh or 86% of its owned net electricity from nuclear power.

Download the Full Utility Decarbonization Report

While the Decarbonization Index provides a look at the current status of utility decarbonization, there’s much more to uncover in the full report, including:

  • The obstacles that utilities face on the path to decarbonization
  • The detailed data behind the six individual metrics
  • The U.S. utilities ESG report card
  • The solutions and strategies that can help accelerate decarbonization

>> Click here to download the full report and find out everything you need to know about utility decarbonization.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular