Connect with us

Misc

Visualizing the Power and Frequency of Earthquakes

Published

on

Earthquake Magnitude

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Visualizing the Power and Frequency of Earthquakes

The surface of our planet is in a constant state of creation and destruction as the plates of the Earth collide. It is this movement of the Earth’s crust that causes earthquakes, sending tremors throughout the world.

Today’s graphic is inspired by a classic USGS diagram that tracks the scale and frequency of earthquakes.

Shifting Foundations

Earthquakes occur because the crust of the Earth is made up of several plates. The boundaries of these plates create faults that can run into one another.

Earthquakes describe both the mechanism that causes a sudden stress release along plate boundaries and also the ensuing ground shaking.

They occur when stress builds up along a tectonic fault. This stress causes the two surfaces of the fault, which had previously been stuck together due to friction, to suddenly move, or slide, releasing energy in the form of seismic waves.

Measuring an Earthquake’s Impact

There are three factors to assess the impact of Earthquakes – magnitude, energy, and intensity.

Magnitude is a number most commonly associated with the Richter scale, describing the size of an Earthquake on a scale from 0 to 10 – the latter of which is the maximum motion recorded by a seismograph. Each increase by one on the scale represents a tenfold increase in the amplitude. There are over a million tremors around the planet each year, but it’s not until an earthquake reaches a magnitude of 4 that humans can typically feel it.

Another way to measure the size of an earthquake is by how much energy it releases. The amount of energy radiated by an earthquake is a measure of the potential for damage to man-made structures.

An earthquake releases energy at various frequencies, and in order to calculate accurately, you have to include all frequencies of shaking for the entire event. Some research suggests technology could harness this energy for power generation.

Intensity describes the severity of an earthquake with a qualitative evaluation of its effects on the Earth’s surface and on the built environment. An earthquake may have a high magnitude but if a city or landscape experiences little damage, it can be said that the intensity is low. The Modified Mercalli Intensity Scale measures this intensity.

The World’s Largest Earthquakes by Magnitude

Prior to the development and use of seismographs, around 1900, scientists could only estimate magnitudes, based on historical reports of the extent and severity of damage.

DateLocationMagnitude
May 22, 1960Valdivia, Chile9.4-9.6
March 27, 1964Prince William Sound, Alaska9.2
Dec. 26, 2004Indian Ocean, Sumatra, Indonesia9.1
March 11, 2011Pacific Ocean, Tohoku Region, Japan9.1
July 8, 1730Valparaiso, Chile9.1-9.3 (est.)
Nov. 4, 1952Kamchatka, Russia9
Aug. 13, 1868Arica, Chile8.5-9.0 (est.)
January 26, 1700Pacific Coast, Modern Day British Columbia8.7-9.2 (est.)
April 2, 1762Chittagong, Bangladesh8.8 (est.)
Nov. 25, 1833Sumatra Indonesia8.8 (est.)

Earthquakes are a fact of life on Earth and mark distinct moments in history. One would think given our knowledge of earthquakes, that humans would avoid these locations – however, the very faults of the Earth also create its greatest advantages.

Living with Your Faults

It’s extremely common to find human settlements along the fault lines where earthquakes occur most frequently. Some could say that this is because these decisions were made before a complete understanding of science enabled us to know the potential risks involved.

However, a recent scientific study reveals that there may be more to the pattern than previously thought. Tectonically active plates may have produced greater biodiversity, more food, and water for our human predecessors.

Certain landscape features formed by tectonic processes such as cliffs, river gorges, and sedimentary valleys create environments that support access to drinking water, shelter, and an abundant food supply.

This inherent problem reveals that humans are more connected to their environments than previously thought. It comes down to a question of how well humans can adapt their lifestyle and built environments to a dynamic planet.

Now let’s worry about the asteroids

Click for Comments

Science

Visualizing the Average Lifespans of Mammals

While smaller animals such as weasels typically live 1-2 years, larger counterparts can thrive for decades.

Published

on

Infographic depicting the average lifespans of diverse mammals.

Visualizing the Average Lifespans of Mammals

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Mammals, though comprising a small fraction of Earth’s creatures, hold vital ecological roles globally. They are crucial for maintaining ecosystem health through services like pollination, seed dispersal, and predator-prey dynamics.

In this visualization, we depict the average lifespans of mammals, using data from Discover Wildlife and the United Nations.

Human Lifespans on the Rise

Defined as warm-blooded creatures with hair or fur, mammals nurse their young with milk from mammary glands. While smaller animals such as weasels typically live 1-2 years, larger counterparts like elephants can thrive for decades, and bowhead whales can live for 200 years, or even longer.

AnimalAverage lifespan (years)
Weasel1 to 2
Hedgehog3
Wolverine12
Tiger14
Brown bear25
Lowland tapir30
Western gorilla35
Brandt's bat41
Humans (1950)47
Elephant56
Humans (2022)72
Bowhead whale200

Notably, human lifespans have experienced a remarkable surge. According to the UN Population Division, the global average life expectancy has surged from 47 years in 1950 to 72 years in 2022, marking a 25-year increase. This is attributed to advancements in nutrition, medication, and essential resources.

However, as human longevity flourishes, it can have an adverse effect on wildlife mammal populations. To put this into numbers, over the past 100,000 years, the surge in human population has precipitated an 85% reduction in wild mammal biomass.

Today, livestock dominates 62% of the world’s mammal biomass, with humans accounting for 34%, while wild mammals comprise only 4%.

Despite a decline in mammal diversity, the total biomass of terrestrial mammals has significantly increased, expanding approximately ninefold over the past 10,000 years.

Curious to learn more about mammals? Check out this graphic that shows the biomass of all the world’s mammals.

Continue Reading
Voronoi, the app by Visual Capitalist. Where data tells the story. Download on App Store or Google Play

Subscribe

Popular