Science
Visualizing the Composition of Blood
The Composition of Blood
Have you ever wondered what blood is made up of?
With the average adult possessing five to six liters of blood in the body, this fluid is vital to our lives, circulating oxygen through the body and serving many different functions.
Despite its simple, deep-red appearance, blood is comprised of many tiny chemical components. This infographic visualizes the composition of blood and the microscopic contents in it.
What is Blood Made Up Of?
There are two main components that comprise blood:
- Plasma – 55%
Plasma is the fluid or aqueous part of blood, making up more than half of blood content. - Formed elements – 45%
Formed elements refer to the cells, platelets, and cell fragments that are suspended in the plasma.
Plasma
Plasma is primarily made up of water (91%), salts, and enzymes, but it also carries important proteins and components that serve many bodily functions.
Plasma proteins make up 7% of plasma contents and are created in the liver. These include:
- Albumins
These proteins keep fluids from leaking out of blood vessels into other parts of the body. They also transport important molecules like calcium and help neutralize toxins. - Globulins
These play an important role in clotting blood and fighting infections and are also transporters of hormones, minerals, and fats. - Fibrinogen and Prothrombin
Both of these proteins help stop bleeding by facilitating the creation of blood clots during wound-healing.
Water and proteins make up 98% of plasma in blood. The other 2% is made up of small traces of chemical byproducts and cellular waste, including electrolytes, glucose, and other nutrients.
Formed Elements
There are three categories of formed elements in blood: platelets, white blood cells, and red blood cells. Red blood cells make up 99% of formed elements, with the other 1% comprised of platelets and white blood cells.
- Platelets (Thrombocytes)
Platelets are cells from the immune system with the primary function of forming clots to reduce bleeding from wounds. This makes them critical not only for small wounds like cuts but also for surgeries and traumatic injuries. - White blood cells (Leukocytes)
White blood cells protect our bodies from infection. There are five types of white blood cells with different roles in fighting infections: some attack foreign cells and viruses, some produce antibodies, some clean up dead cells, and some respond to allergens. - Red blood cells (Erythrocytes)
Red blood cells deliver fresh oxygen and nutrients all over the body. They contain a special protein called hemoglobin, which carries oxygen and gives blood its bright red color.
The lifespan of a typical red blood cell is around 120 days, after which it dies and is replaced by a new cell. Our bodies are constantly producing red blood cells in the bone marrow, at a rate of millions of cells per second.
Abnormal Red Blood Cells
Normal red blood cells are round, flattened disks that are thinner in the middle. However, certain diseases and medical therapies can change the shape of red blood cells in different ways.
Here are the types of abnormal red blood cells and their associated diseases:
Sickle cell anemia is a well-known disease that affects the shape of red blood cells. Unlike normal, round red blood cells, cells associated with sickle cell disease are crescent- or sickle-shaped, which can slow and block blood flow.
Other common causes of abnormally shaped red blood cells are thalassemia, hereditary blood disorders, iron deficiency anemia, and liver disease. Identifying abnormal blood cells plays an important role in diagnosing the underlying causes and in finding treatments.
The Functions of Blood
We know that blood is vital, but what does it actually do in the body?
For starters, here are some of the functions of blood:
- Blood transports oxygen to different parts of the body, providing an energy source. It also delivers carbon dioxide to the lungs for exhalation.
- The platelets, white blood cells, and plasma proteins in blood play an important role in fighting infections and clotting.
- Blood transports the body’s waste products to the kidneys and liver, which filter it and recirculate clean blood.
- Blood helps regulate the body’s internal temperature by absorbing and distributing heat throughout the body.
While we all know that we can’t live without blood, it serves many different functions in the body that we often don’t notice. For humans and many other organisms alike, blood is an integral component that keeps us alive and going.
Green
The Anthropocene: A New Epoch in the Earth’s History
We visualize Earth’s history through the geological timeline to reveal the planet’s many epochs, including the Anthropocene.

The Anthropocene: A New Epoch in the Earth’s History
Over the course of Earth’s history, there have been dramatic shifts in the landscape, climate, and biodiversity of the planet. And it is all archived underground.
Layers of the planet’s crust carry evidence of pivotal moments that changed the face of the Earth, such as the ice age and asteroid hits. And scientists have recently defined the next major epoch using this geological time scale—the Anthropocene.
In this infographic we dig deep into the Earth’s geological timeline to reveal the planet’s shift from one epoch to another, and the specific events that separate them.
Understanding the Geological Timeline
The Earth’s geological history is divided into many distinct units, from eons to ages. The time span of each varies, since they’re dependent on major events like new species introduction, as well as how they fit into their parent units.
Geochronologic unit | Time span | Example |
---|---|---|
Eon | Several hundred million years to two billion years | Phanerozoic |
Era | Tens to hundreds of millions of years | Cenozoic |
Period | Millions of years to tens of millions of years | Quaternary |
Epoch | Hundreds of thousands of years to tens of millions of years | Holocene |
Age | Thousands of years to millions of years | Meghalayan |
Note: Subepochs (between epochs and ages) have also been ratified for use in 2022, but are not yet clearly defined.
If we were to cut a mountain in half, we could notice layers representing these changing spans of time, marked by differences in chemical composition and accumulated sediment.
Some boundaries are so distinct and so widespread in the geologic record that they are known as “golden spikes.” Golden spikes can be climatic, magnetic, biological, or isotopic (chemical).
Earth’s Geological Timeline Leading Up to the Anthropocene
The Earth has gone through many epochs leading up to the modern Anthropocene.
These include epochs like the Early Devonian, which saw the dawn of the first early shell organisms 400 million years ago, and the three Jurassic epochs, which saw dinosaurs become the dominant terrestrial vertebrates.
Over the last 11,700 years, we have been living in the Holocene epoch, a relatively stable period that enabled human civilization to flourish. But after millennia of human activity, this epoch is quickly making way for the Anthropocene.
Epoch | Its start (MYA = Million Years Ago) |
---|---|
Anthropocene | 70 Years Ago |
Holocene | 0.01 MYA |
Pleistocene | 2.58 MYA |
Pliocene | 5.33 MYA |
Miocene | 23.04 MYA |
Oligocene | 33.90 MYA |
Eocene | 56.00 MYA |
Paleocene | 66.00 MYA |
Cretaceous | 145.0 MYA |
Jurassic | 201.40 MYA |
Triassic | 251.90 MYA |
Lopingian | 259.50 MYA |
Guadalupian | 273.00 MYA |
Cisuralian | 300.00 MYA |
Pennsylvanian | 323.40 MYA |
Mississippian | 359.30 MYA |
Devonian | 419.00 MYA |
Silurian | 422.70 MYA |
Ludlow | 426.70 MYA |
Wenlock | 432.90 MYA |
Llandovery | 443.10 MYA |
Ordovician | 486.90 MYA |
Furongian | 497.00 MYA |
Miaolingian | 521.00 MYA |
Terreneuvian | 538.80 MYA |
The Anthropocene is distinguished by a myriad of imprints on the Earth including the proliferation of plastic particles and a noticeable increase in carbon dioxide levels in sediments.
A New Chapter in Earth’s History
The clearest identified marker of this geological time shift, and the chosen golden spike for the Anthropocene, is radioactive plutonium from nuclear testing in the 1950s.
The best example has been found in the sediment of Crawford Lake in Ontario, Canada. The lake has two distinct layers of water that never intermix, causing falling sediments to settle in distinct layers at its bed over time.
While the International Commission on Stratigraphy announced the naming of the new epoch in July 2023, Crawford Lake is still in the process of getting approved as the site that marks the new epoch. If selected, our planet will officially enter the Crawfordian Age of the Anthropocene.
-
AI4 weeks ago
AI vs. Humans: Which Performs Certain Skills Better?
-
Maps2 weeks ago
Mapped: The Deadliest Earthquakes of the 21st Century
-
Countries19 hours ago
Charted: The World’s Biggest Oil Producers
-
Demographics3 weeks ago
Visualizing the World’s Growing Millionaire Population (2012-2022)
-
Energy2 weeks ago
What Electricity Sources Power the World?
-
Wealth3 weeks ago
Mapped: The Richest Billionaires in U.S. States
-
Markets2 weeks ago
The 25 Worst Stocks by Shareholder Wealth Losses (1926-2022)
-
China3 weeks ago
Charted: Youth Unemployment in the OECD and China