Visualizing the Jobs Lost to Automation
Connect with us

Technology

Visualizing the Jobs Lost to Automation

Published

on

Jobs Lost to Automation

Visualizing the Jobs Lost to Automation

The employment landscape of the future will look very different than it does today.

While we’ve charted the automation potential of U.S. jobs before, today’s graphic from Henrik Lindberg perhaps tells the story more succinctly.

In plain black and white, it shows the jobs that exist today in contrast to the jobs that are expected to disappear as a result of automation in the workplace. Though, technically speaking, it is applying the probabilities of the widely-cited Frey & Osborne (2013) study to U.S. jobs as of 2016 to give an expected value to each job title.

A Different Landscape

In the near-future, many of today’s most common jobs may be changed profoundly. People working as retail salespersons, cashiers, fast food counter workers, and truck drivers will likely see opportunities in those fields dry up as automation takes place.

At the same time, jobs such as those in teaching and nursing are expected to stand the test of time, as they require empathy, creativity, and a human touch not yet available through machines. In the coming decades, it’s possible that these could even be professions that employ the most people overall.

Casualties of the Fall?

In the vastly different employment landscape of the future, the worry is that low income workers will have fewer opportunities available to them as technology comes into play.

The good news? Historically this has not been true. As an example, nearly 500 years ago, Queen Elizabeth I had a similar fear when she denied a patent for an automated knitting machine. The thought was that the machine would kill jobs, though eventually factories and companies adopted similar technologies anyways. With the lower prices, higher demand for knitted goods, and more capital for investment, jobs for factory weavers actually quadrupled in the coming years.

As we’ve seen over time, while machines destroy jobs, they also often create new ones.

Composition of U.S. Job Market over the Last 150+ Years

Jobs as a Percent

The bad news? It is now clear that agricultural jobs of the early 20th century were replaced with the white collar jobs of today. However, it is much more difficult to forecast out how some of the jobs of the future will be created, especially for low income workers.

The knitting example above certainly applies in some situations – but in others, it’s hard to say what will happen. For example, with millions of unemployed long-haul truck drivers, what roles will these people be taking in the future job market?

Even with costs of transportation and logistics going down, increased demand, and more capital to invest, it seems that there’s going to be a lengthy period of time where many of these people will have trouble finding work.

Do they join the company to help manage the many more trucks that are self-driving? It’s unlikely, and that is the part of the optimism about automation and future jobs that is the hardest to reconcile.

Subscribe to Visual Capitalist
Click for Comments

Technology

Visualizing the Critical Metals in a Smartphone

Smartphones can contain ~80% of the stable elements on the periodic table. This graphic details the critical metals you carry in your pocket.

Published

on

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

This post was originally featured on Elements

Continue Reading

Technology

Which Companies Belong to the Elite Trillion-Dollar Club?

Only a few companies have broken the 13-digit market cap barrier to join the $1T+ club. Who’s a member, and who’s hot on their heels?

Published

on

Which Companies Belong to the Elite Trillion-Dollar Club?

Just a handful of publicly-traded companies have managed to achieve $1 trillion or more in market capitalization—only six, to be precise.

We pull data from Companies Market Cap to find out which familiar names are breaking the 13-digit barrier—and who else is waiting in the wings.

Footnote: All data referenced is as of August 17, 2021.

The Major Players in the Game

Apple and Microsoft are the only two companies to have shattered the $2T market cap milestone to date, leaving others in the dust. Apple was also the first among its Big Tech peers to ascend to the $1 trillion landmark back in 2018.

CompanyValuationCountryAge of company
Apple$2.48T🇺🇸 U.S.45 years (Founded 1976)
Microsoft$2.20T🇺🇸 U.S.46 years (Founded 1975)
Saudi Aramco$1.88T🇸🇦 Saudi Arabia88 years (Founded 1933)
Alphabet (Google)$1.83T🇺🇸 U.S.23 years (Founded 1998)
Amazon$1.64T🇺🇸 U.S.27 years (Founded 1994)
Facebook$1.01T🇺🇸 U.S.17 years (Founded 2004)

Facebook dipped in and out of the $1T+ club in July 2021, and continues its capricious movement. With just 17 years under its belt, it’s the youngest company ever to reach this valuation milestone—though not without some wild rides along the way.

State-owned oil and gas giant Saudi Aramco is the only non-American company to make the trillion-dollar club. This makes it a notable outlier, as American companies typically dominate the leaderboard of the biggest corporations around the world.

Who Else Might Join the Trillion-Dollar Club?

Companies with a market capitalization above $500 billion are also few and far between. Within this next list of six companies, the world’s most valuable automaker Tesla is another strong candidate to eventually join the Four Comma Club.

As per usual, analyst views on Tesla are quite varied. That said, some on Wall Street are predicting that Tesla might reach $3 trillion in market cap within the decade, owing to significant current and projected demand for electric vehicles (EVs) and driverless systems.

CompanyValuationCountryAge of company
Tesla$659B🇺🇸 U.S.17 years (Founded 2003)
Berkshire Hathaway$655B🇺🇸 U.S.182 years (Founded 1839)
TSMC$576B🇹🇼 Taiwan34 years (Founded 1987)
Tencent$537B🇨🇳 China23 years (Founded 1998)
Visa$515B🇺🇸 U.S.63 years (Founded 1958)

Visa, one of the pioneers of consumer credit in the United States, continues to innovate even 63 years after its founding. In attempts to expand the reach of its already massive payments ecosystem, Visa is experimenting with acquisitions, and even dipping its toes into cryptocurrency with some success.

Whether the next company to join the trillion-dollar club comes from the U.S., from the tech industry, or out of left field, it’s clear that it has some pretty big shoes to fill.

Continue Reading

Subscribe

Popular