Visualizing Global Per Capita CO2 Emissions
Connect with us

Green

Visualizing Global Per Capita CO2 Emissions

Published

on

Per Capita CO2 Emissions by Country

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Highest Per Capita CO2 Emissions

Developing countries like China, India, and Russia are some of the highest producers of CO2 worldwide and will be so for a while. But the situation is far from straightforward—and looking at CO2 emissions per capita can add nuance to the overall story.

Based on data presented by the Aqal Group and the IEA, here we visualize the countries and regions with the highest per capita carbon emissions from around the world.

Let’s dive into the highest per capita carbon emitters and how they are trying to reduce their carbon contributions.

Leaders in Per Capita CO2 Emissions

Oil-producing countries in the Middle East are the highest emitters of CO2 on a per capita basis, but developed countries like the U.S., Australia, New Zealand, and Canada also have some of the higher rates of per capita emissions.

RankCountry or RegionCarbon Emissions Per Capita (t/year)
#1Middle East A*19.5
#2Canada15.2
#3Saudi Arabia14.5
#4United States14.4
#5Australia & New Zealand13.6
#6Russia11.4
#7South Korea11.3
#8Kazakhstan & Turkmenistan11.2
#9Taiwan10.8
#10Japan8.4
Global Average4.4

*Middle East A group includes Bahrain, Oman, Kuwait, Qatar, and United Arab Emirates

Canada and the United States have per capita carbon footprints of 15.2 and 14.4 tonnes per year, respectively. Meanwhile, Australia and New Zealand combine for an average per capita footprint of over 13.6 tonnes per year.

It’s worth noting that all of these numbers are more than three times higher than the global average, which in 2019 was 4.4 tonnes per person.

Energy Sources and Per Capita CO2 Emissions

Since there is a strong relationship between wealth and per capita CO2 emissions, we’d expect countries with high living standards to have a high carbon footprint.

But the data above shows significant differences in per capita emissions, even between countries with similar living standards. Many countries across Europe, for example, have much lower emissions than the U.S., Canada, or Australia.

Here’s a look at the top 25 countries by standard of living and their share of electricity production from fossil fuels:

RankCountryPer Capita Electricity
Consumption (kWh)
% Electricity Production
(from fossil fuels)
1🇫🇮 Finland12,17415.6%
2🇩🇰 Denmark5,01521.8%
3🇳🇴 Norway26,4921.2%
4🇧🇪 Belgium7,41434.6%
5🇸🇪 Sweden16,4782.2%
6🇨🇭 Switzerland7,9351.0%
7🇳🇱 Netherlands7,26471.5%
8🇫🇷 France8,0979.5%
9🇩🇪 Germany6,77143.8%
10🇯🇵 Japan7,44669.1%
11🇬🇧 United Kingdom4,50040.7%
12🇨🇦 Canada16,64816.6%
13🇰🇷 South Korea10,45865.8%
14🇺🇸 United States12,23560.1%
15🇹🇼 Taiwan11,09182.8%
16🇦🇹 Austria7,71620.7%
17🇦🇺 Australia9,85775.1%
18🇮🇪 Ireland6,40859.3%
19🇸🇬 Singapore8,54296.7%
20🇪🇸 Spain5,64134.4%
21🇮🇹 Italy4,55456.8%
22🇨🇿 Czech Republic7,53450.7%
23🇵🇹 Portugal5,10041.2%
24🇳🇿 New Zealand8,88018.9%
25🇱🇺 Luxembourg1,52928.5%

Sources: Electricity consumption, Fossil fuel mix

The choice of energy sources plays a key role here. In the UK, Portugal, and France, a much higher share of electricity is produced from nuclear and renewable sources.

For example, only 9.5% of France’s electricity production comes from fossil fuels, compared to other developed countries like the U.S. at 60.1% and Japan at 69.1%.

G20 Countries and Carbon Emissions

This reliance on fossil fuels for energy production extends to the rest of the G20 countries. According to the Climate Transparency Report, CO2 emissions will rise by 4% across the G20 group this year, dropping 6% in 2020 due to the pandemic.

This rise is mainly due to the increase in coal consumption across these countries. Coal consumption is projected to rise by almost 5% in 2021, with this growth driven by China (accounting for 61% of the growth), the U.S. (18%), and India (17%).

Here’s a look at the current coal power capacity of each G20 country:

coal power capacity of g20 members

Coal use in China has surged, with the country experiencing increased demand for energy as the global economy has recovered. Coal prices are up nearly 200% from a year ago.

Plans to Tackle Emissions

The conclusion of the U.N. Climate Change Conference (COP26) in Glasgow saw several pledges and announcements being made by various countries. Here are some of the highlights:

  • The world’s biggest CO2 emitters, the U.S. and China, pledged to cooperate more over the next decade in areas including methane emissions and the switch to clean energy.
  • Leaders from more than 100 countries—with about 85% of the world’s forests—promised to stop deforestation by 2030.
  • More than 100 countries agreed upon a scheme to cut 30% of methane emissions by 2030.
  • Financial organizations have agreed to back renewable energy and direct finance away from fossil fuel-burning industries.

Many countries have pledged to do their part to tackle climate change. It will be an impressive display of global unity if global CO2 emissions drop significantly over the next decade.

Click for Comments

Technology

Synthetic Biology: The $3.6 Trillion Science Changing Life as We Know It

The field of synthetic biology could solve problems in a wide range of industries, from medicine to agriculture—here’s how.

Published

on

How Synthetic Biology Could Change Life as we Know it

Synthetic biology (synbio) is a field of science that redesigns organisms in an effort to enhance and support human life. According to one projection, this rapidly growing field of science is expected to reach $28.8 billion in global revenue by 2026.

Although it has the potential to transform many aspects of society, things could go horribly wrong if synbio is used for malicious or unethical reasons. This infographic explores the opportunities and potential risks that this budding field of science has to offer.

What is Synthetic Biology?

We’ve covered the basics of synbio in previous work, but as a refresher, here’s a quick explanation of what synbio is and how it works.

Synbio is an area of scientific research that involves editing and redesigning different biological components and systems in various organisms.

It’s like genetic engineering but done at a more granular level—while genetic engineering transfers ready-made genetic material between organisms, synbio can build new genetic material from scratch.

The Opportunities of Synbio

This field of science has a plethora of real-world applications that could transform our everyday lives. A study by McKinsey found over 400 potential uses for synbio, which were broken down into four main categories:

  • Human health and performance
  • Agriculture and food
  • Consumer products and services
  • Materials and energy production

If those potential uses become reality in the coming years, they could have a direct economic impact of up to $3.6 trillion per year by 2030-2040.

1. Human Health and Performance

The medical and health sector is predicted to be significantly influenced by synbio, with an economic impact of up to $1.3 trillion each year by 2030-2040.

Synbio has a wide range of medical applications. For instance, it can be used to manipulate biological pathways in yeast to produce an anti-malaria treatment.

It could also enhance gene therapy. Using synbio techniques, the British biotech company Touchlight Genetics is working on a way to build synthetic DNA without the use of bacteria, which would be a game-changer for the field of gene therapy.

2. Agriculture and Food

Synbio has the potential to make a big splash in the agricultural sector as well—up to $1.2 trillion per year by as early as 2030.

One example of this is synbio’s role in cellular agriculture, which is when meat is created from cells directly. The cost of creating lab-grown meat has decreased significantly in recent years, and because of this, various startups around the world are beginning to develop a variety of cell-based meat products.

3. Consumer Products and Services

Using synthetic biology, products could be tailored to suit an individual’s unique needs. This would be useful in fields such as genetic ancestry testing, gene therapy, and age-related skin procedures.

By 2030-2040, synthetic biology could have an economic impact on consumer products and services to the tune of up to $800 billion per year.

4. Materials and Energy Production

Synbio could also be used to boost efficiency in clean energy and biofuel production. For instance, microalgae are currently being “reprogrammed” to produce clean energy in an economically feasible way.

This, along with other material and energy improvements through synbio methods, could have a direct economic impact of up to $300 billion each year.

The Potential Risks of Synbio

While the potential economic and societal benefits of synthetic biology are vast, there are a number of risks to be aware of as well:

  • Unintended biological consequences: Making tweaks to any biological system can have ripple effects across entire ecosystems or species. When any sort of lifeform is manipulated, things don’t always go according to plan.
  • Moral issues: How far we’re comfortable going with synbio depends on our values. Certain synbio applications, such as embryo editing, are controversial. If these types of applications become mainstream, they could have massive societal implications, with the potential to increase polarization within communities.
  • Unequal access: Innovation and progress in synbio is happening faster in wealthier countries than it is in developing ones. If this trend continues, access to these types of technology may not be equal worldwide. We’ve already witnessed this type of access gap during the rollout of COVID-19 vaccines, where a majority of vaccines have been administered in rich countries.
  • Bioweaponry: Synbio could be used to recreate viruses, or manipulate bacteria to make it more dangerous, if used with ill intent.

According to a group of scientists at the University of Edinburgh, communication between the public, synthetic biologists, and political decision-makers is crucial so that these societal and environmental risks can be mitigated.

Balancing Risk and Reward

Despite the risks involved, innovation in synbio is happening at a rapid pace.

By 2030, most people will have likely eaten, worn, or been treated by a product created by synthetic biology, according to synthetic biologist Christopher A. Voigt.

Our choices today will dictate the future of synbio, and how we navigate through this space will have a massive impact on our future—for better, or for worse.

Continue Reading

Energy

How Far Are We From Phasing Out Coal?

In 2021 coal-fired electricity generation reached all-time highs, rising 9% from the year prior. Here’s what it’d take to phase it out of the energy mix.

Published

on

How Far Are We From Phasing Out Coal?

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

At the COP26 conference last year, 40 nations agreed to phase coal out of their energy mixes.

Despite this, in 2021, coal-fired electricity generation reached all-time highs globally, showing that eliminating coal from the energy mix will not be a simple task.

This infographic shows the aggressive phase-out of coal power that would be required in order to reach net zero goals by 2050, based on an analysis by Ember that uses data provided by the International Energy Agency (IEA).

Low-Cost Comes at a High Environmental Cost

Coal-powered electricity generation rose by 9.0% in 2021 to 10,042 Terawatt-hours (TWh), marking the biggest percentage rise since 1985.

The main reason is cost. Coal is the world’s most affordable energy fuel. Unfortunately, low-cost energy comes at a high cost for the environment, with coal being the largest source of energy-related CO2 emissions.

China has the highest coal consumption, making up 54% of the world’s coal electricity generation. The country’s consumption jumped 12% between 2010 and 2020, despite coal making up a lower percentage of the country’s energy mix in relative terms.

Top Consumers2020 Consumption (Exajoules) Share of global consumption
China 🇨🇳82.354.3%
India 🇮🇳17.511.6%
United States 🇺🇸9.26.1%
Japan 🇯🇵4.63.0%
South Africa 🇿🇦3.52.3%
Russia 🇷🇺3.32.2%
Indonesia 🇮🇩3.32.2%
South Korea 🇰🇷3.02.0%
Vietnam 🇻🇳2.11.4%
Germany 🇩🇪1.81.2%

Together, China and India account for 66% of global coal consumption and emit about 35% of the world’s greenhouse gasses (GHG). If you add the United States to the mix, this goes up to 72% of coal consumption and 49% of GHGs.

How Urgent is to Phase Out Coal?

According to the United Nations, emissions from current and planned fossil energy infrastructure are already more than twice the amount that would push the planet over 1.5°C of global heating, a level that scientists say could bring more intense heat, fire, storms, flooding, and drought than the present 1.2°C.

Apart from being the largest source of CO2 emissions, coal combustion is also a major threat to public health because of the fine particulate matter released into the air.

As just one example of this impact, a recent study from Harvard University estimates air pollution from fossil fuel combustion is responsible for 1 in 5 deaths globally.

The Move to Renewables

Coal-powered electricity generation must fall by 13% every year until 2030 to achieve the Paris Agreement’s goals of keeping global heating to only 1.5 degrees.

To reach the mark, countries would need to speed up the shift from their current carbon-intensive pathways to renewable energy sources like wind and solar.

How fast the transition away from coal will be achieved depends on a complicated balance between carbon emissions cuts and maintaining economic growth, the latter of which is still largely dependent on coal power.

Continue Reading

Subscribe

Popular