Connect with us

Maps

Map: Visualizing Every Ship at Sea in Real-Time

Published

on

The ocean is a big place, which makes it a pretty difficult thing to wrap our brains around.

It covers over 70% of the Earth’s surface, is home to millions of species of life, and it makes up 97% of all water on the planet. But, with this massive size and ubiquity also comes a significant challenge for humans interested in trade: it must be constantly traversed in order for us to move goods around.

As a result, millions of people hit the high seas each day to get cargo from one place to another. The vessels used range from tiny sailboats to massive oil tankers, some of which can get up to four football fields in length.

Every Ship at Sea

We previously posted an interactive map of shipping routes that used 250 million data points to show how boats moved across the ocean.

Today, in a similar vein, we highlight a website that tracks the world’s ships in real-time, providing a unique picture of what is happening at sea. Below is a screenshot from MarineTraffic and going there will allow you to see all major ships in real-time as they voyage around the Deep Blue Sea.

Every ship visualized

You may be wondering, does this really show every ship at sea?

Well, it might not catch your Uncle Steve’s sailboat off the coast of Florida, but this map will show all major commercial vessels. Any oil tanker, cargo vessel, cruise ship, or fishing boat can be spotted, and it makes for some interesting observations if you know where to look.

A Look at Oil Chokepoints

Upon loading the real-time map, the first thing we did was adjust the filters to only show oil tankers.

After all, we know that every day, about 18.5 million barrels transit through the Strait of Hormuz between Iran and Oman, and 16 million barrels go through the Strait of Malacca between Indonesia and Malaysia.

EIA Chart on Oil Chokepoints

Here’s a screenshot of the Strait of Hormuz, showing only oil tankers. (Dots are tankers that are not moving, while arrows represent tankers that are currently on course.)

Strait of Hormuz

And here are the ships going through the Strait of Malacca, which at its narrowest point is only 1.7 miles (2.7 km) wide.

Strait of Malacca

If you want to get oil from the Persian Gulf to the South China Sea, this strait is vital – otherwise a big ship must detour thousands of miles around the Indonesian islands of Sumatra and Java to find the next suitable waterway.

Coast of Somalia

Compare those above straits to the coast off of Somalia, where piracy and hydrocarbon theft are major concerns.

Somalia

All is pretty quiet, aside from the one daring tanker that is about 500 miles (800 km) east of Mogadishu.

Antarctic Cruises

One other easy observation?

It’s the few passenger boats hanging around the Antarctic Peninsula – which is the part of the continent closest to Argentina and a destination for cruise ships.

Antarctica

If you have a chance, check out the live map for yourself and play around with the filters. It’s also interesting to see what’s happening in your local waters, as well.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Maps

Wired World: 35 Years of Submarine Cables in One Map

Watch the explosive growth of the global submarine cable network, and learn who’s funding the next generation of cables.

Published

on

submarine cable network

You could be reading this article from nearly anywhere in the world and there’s a good chance it loaded in mere seconds.

Long gone are the days when images would load pixel row by pixel row. Now, even high-quality video is instantly accessible from almost everywhere. How did the internet get so fast? Because it’s moving at the speed of light.

The Information Superhighway

The miracle of modern fiber optics can be traced to a single man, Narinder Singh Kapany. The young physicist was skeptical when his professors asserted that light ‘always travels in a straight line’. His explorations into the behavior of light eventually led to the creation of fiber optics—essentially, beaming light through a thin glass tube.

The next step to using fiber optics as a means of communication was lowering the cable’s attenuation rate. Throughout the 1960-70s, companies made gains in manufacturing, reducing the number of impurities and allowing light to cross great distances without a dramatic decrease in signal intensity.

By the mid-1980s, long distance fiber optic cables had finally reached the feasibility stage.

Crossing the Pond

The first intercontinental fiber optic cable was strung across the floor of the Atlantic Ocean in 1988. The cable—known as TAT-8*—was spearheaded by three companies; AT&T, France Télécom, and British Telecom. The cable was able to carry the equivalent of 40,000 telephone channels, a ten-fold increase over its galvanic predecessor, TAT-7.

Once the kinks of the new cable were worked out, the floodgates were open. During the course of the 1990s, many more cables hit the ocean floor. By the dawn of the new millennium, every populated continent on Earth was connected by fiber optic cables. The physical network of the internet was beginning to take shape.

As today’s video from ESRI shows, the early 2000s saw a boom in undersea cable development, reflecting the uptick in internet usage around globe. In 2001 alone, eight new cables connected North America and Europe.

From 2016-2020, over 100 new cables were laid with an estimated value of $14 billion. Now, even the most remote Polynesian islands have access to high-speed internet thanks to undersea cables.

*TAT-8 does not appear in the video above as it was retired in 2002.

The Shifting Nature of Cable Construction

Even though nearly every corner of the globe is now physically connected, the rate of cable construction is not slowing down.

This is due to the increasing capacity of new cables and our appetite for high-quality video content. New cables are so efficient that the majority of potential capacity along major cable routes will come from cables that are less than five years old.

Traditionally, a consortium of telecom companies or governments would fund cable construction, but tech companies are increasingly funding their own submarine cable networks.

tech company submarine cables

Source

Amazon, Microsoft and Google own close to 65% market share in cloud data storage, so it’s understandable that they’d want to control the physical means of transporting that data as well.

These three companies now own 63,605 miles of submarine cable. While laying cable is a costly endeavor, it’s necessary to meet surging demand—content providers’ share of data transmission skyrocketed from around 8% to nearly 40% over the past decade.

A Bright Future for Dark Fiber

At the same time, more aging cables will be taken offline. Even though signals are no longer traveling through this network of “dark fiber”, it’s still being put to productive use. It turns out that undersea telecom cables make a very effective seismic network, helping researchers study offshore earthquakes and the geologic structures on the ocean floor.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Energy

Mapped: The World’s Biggest Oil Discoveries Since 1868

Since 1868, there had been 1,232 oil discoveries over 500 million barrels of oil. This map plots these discoveries to reveal global energy hot spots.

Published

on

Mapped: The World’s Biggest Oil Discoveries Since 1868

Oil and gas discoveries excite markets and nations with the prospect of profits, tax revenues, and jobs. However, geological processes did not distribute them equally throughout the Earth’s crust and their mere presence does not guarantee a windfall for whatever nation under which they lie.

Entire economies and nations have been built on the discovery and exploitation of oil and gas, while some nations have misused this wealth─or projected growth just never materialized.

Today’s chart comes to us from research compiled by World Bank economist Jim Cust and Natural Resource Governance Institute economist David Mihalyi and it plots major oil discoveries since 1868.

The 20 Biggest Oil Discoveries

This map includes 1,232 discoveries of recoverable reserves over 500 million barrels of oil equivalent (BOE) From 1868 to 2010.

The discoveries cluster in certain parts of the world, covering 46 countries, and are of significant magnitude for each country’s economy. The average discovery is worth 1.4% of a country’s GDP today, based on the cash value from their production or net present value (NPV).

Of the total 1,232 discoveries, these are the 20 largest oil and gas fields:

FieldOnshore/OffshoreLocationDiscoveryProduction startRecoverable oil, past and future (billion barrels)
Ghawar FieldOnshoreSaudi Arabia1948195188-104
Burgan FieldOnshoreKuwait1937194866-72
Gachsaran FieldOnshoreIran1927193066
Mesopotamian Foredeep BasinOnshoreKuwaitn/an/a66-72
Bolivar Coastal FieldOnshoreVenezuela1917192230-32
Safaniya FieldOffshoreKuwait/Saudi Arabia1951195730
Esfandiar FieldOffshoreIran1965n/a30
Kashagan FieldOffshoreKazakhstan2000201330
Aghajari FieldOnshoreIran1938194028
Tengiz FieldOnshoreKazakhstan1979199326-40
Ahvaz FieldOnshoreIran1953195425
Upper Zakum FieldOffshoreAbu Dhabi, UAE1963196721
Cantarell FieldOffshoreMexico1976198118-35
Rumaila FieldOnshoreIraq1953195417
Romashkino FieldOnshoreRussia Volga-Ural1948194916-17
Marun FieldOnshoreIran1963196616
Daqing FieldOnshoreChina1959196016
Shaybah FieldOnshoreSaudi Arabia1998199815
West Qurna FieldOnshoreIraq1973201215-21
Samotlor FieldOnshore
Russia, West Siberia
1965196914-16

The location of these deposits reveals a certain pattern to geopolitical flashpoints and their importance to the global economy.

While these discoveries have brought immense advantages in the form of cheap fuel and massive revenues, they have also altered and challenged how nations govern their natural wealth.

The Future of Resource Wealth: A Curse or a Blessing?

A ‘presource curse’ could follow in the wake of the discovery, whereby predictions of projected growth and feelings of euphoria turn into disappointment.

An oil discovery can impose detrimental consequences on an economy long before a single barrel leaves the ground. Ideally, a discovery should increase the economic output of a country that claims the oil. However, after major discoveries, the projected growth sometimes does not always materialize as predicted.

Getting from discovery to sustained prosperity depends on a number of steps. Countries must secure investment to develop a project to production, and government policy must respond by preparing the economy for an inflow of investment and foreign currency. However, this is a challenging prospect, as the appetite for these massive projects appears to be waning.

In a world working towards reducing its dependence on fossil fuels, what will happen to countries that depend on oil wealth when demand begins to dwindle?

Countries can no longer assume their oil and gas resources will translate into reliable wealth — instead, it is how you manage what you have now that counts.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Get more Visual Capitalist with VC+

Subscribe

Join the 130,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular