Connect with us

Green

Visualizing Changes in CO₂ Emissions Since 1900

Published

on

Subscribe to the Elements free mailing list for more like this

Visualizing Changes in CO₂ Emissions Since 1900

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Visualizing CO₂ Emissions Since 1900

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Leaders from all over the world are currently gathering at the Conference of the Parties of the UNFCCC (COP 27) in Egypt to discuss climate action, and to negotiate the commitments being made by countries to the global climate agenda.

This visualization based on data from the Global Carbon Project shows the changes in global fossil fuel carbon dioxide (CO₂) emissions from 1900 to 2020, putting the challenge of fighting climate change into perspective.

Cumulative CO₂ Emissions vs. Rate of Change

Global climate change is primarily caused by carbon dioxide emissions. Fossil fuels like coal, oil, and gas release large amounts of CO₂ when burned or used in industrial processes.

Before the Industrial Revolution (1760-1840), emissions were very low. However, with the increased use of fossil fuels to power machines, emissions rose to 6 billion tonnes of CO₂ per year globally by 1950. The amount had almost quadrupled by 1990, reaching a rate of over 22 billion tonnes per year.

Currently, the world emits over 34 billion tonnes of CO₂ each year. Since 1751, the world has emitted over 1.5 trillion tonnes of CO₂ cumulatively.

Cumulative CO2 Emissions

Prior to the COVID-19 pandemic, average global growth in fossil CO₂ emissions had slowed to 0.9% annually during the 2010s, reaching 36.7 gigatons of CO₂ added to the atmosphere in 2019.

However, in 2020, global lockdowns led to the biggest decrease in CO₂ emissions ever seen in absolute terms. Global fossil CO₂ emissions decreased by 5.2% to 34.8 gigatons, mainly due to halts in aviation, surface transport, power generation, and manufacturing during the pandemic.

Since then, emissions have approached pre-pandemic levels, reaching 36.2 gigatons added to the atmosphere in 2021.

Biggest Emitters, by Country

Asia, led by China, is the largest emitter, with the continent accounting for more than half of global emissions.

RankCountry 2020 CO₂ Emissions
(Millions of metric tons)
#1🇨🇳 China 10,668
#2🇺🇸 United States4,713
#3🇮🇳 India 2,442
#4🇷🇺 Russia 1,577
#5🇯🇵 Japan 1,031
#6🇮🇷 Iran745
#7🇩🇪 Germany644
#8🇸🇦 Saudi Arabia626
#9🇰🇷 South Korea598
#10🇮🇩 Indonesia590
#11🇨🇦 Canada536
#12🇧🇷 Brazil467
#13🇿🇦 South Africa 452
#14🇹🇷 Turkey 393
#15🇦🇺 Australia 392

CO₂ emissions from developing economies already account for more than two-thirds of global emissions, while emissions from advanced economies are in a structural decline.

Coal Power Generation Set for Record Increase

To avoid the worst impacts of climate change, more than 130 countries have now set or are considering a target of reducing emissions to net zero by 2050.

Much of the slowdown in emissions growth in the 2010s was attributable to the substitution of coal—the fuel that contributes most to planet-warming emissions—with gas and renewables. In addition, during the previous COP26 held in Glasgow, 40 nations agreed to phase coal out of their energy mixes.

Despite that, in 2021, coal-fired electricity generation reached all-time highs globally and is set for a new record in 2022 as consumption surged in Europe to replace shortfalls in hydro, nuclear, and Russian natural gas.

As leaders meet in Egypt for the world’s largest gathering on climate action, it will be up to them to come up with a plan for making their environmental aspirations a reality.

Click for Comments

Green

Visualized: An Investor’s Carbon Footprint, by Sector

Which sectors are the largest contributors to emissions? From energy to tech, this graphic shows carbon emissions by sector in 2023.

Published

on

Visualized: An Investor’s Carbon Footprint, by Sector

Published

on

The following content is sponsored by MSCI
Visualized: An Investor’s Carbon Footprint, by Sector

Visualized: An Investor’s Carbon Footprint, by Sector

In the quest for a sustainable future, investors can play a crucial role in shaping our planet’s destiny.

Understanding the carbon emissions in different sectors is a key way to make environmentally and financially conscious decisions and help make a positive impact on the planet.

This infographic, sponsored by MSCI, looks at carbon emissions by sector.

Types of Carbon Emissions

Unsurprisingly, industries heavily reliant on fossil fuels and energy-intensive processes, like energy, materials, and industrials, have significant carbon footprints. In contrast, service-based and technology industries are traditionally less carbon-intensive.

To get an accurate picture of a sector/industry’s carbon footprint, it’s important to look up and down their value chain. Here is how policymakers categorize carbon emissions:

  1. Scope 1: Generated directly by the organization and within its control e.g., on-site fuel combustion and internal industrial processes.
  2. Scope 2: Indirect emissions from energy use, such as purchased electricity, heat, or cooling.
  3. Scope 3: Indirect emissions, but different from Scope 2 emissions. These are emissions that the company does not directly control such as the emissions produced from a supplier or emissions generated from the use of its sold product.

Only looking at all three scopes of emissions can we arrive at a complete picture of a sector’s carbon footprint.

Volume of Carbon Emissions, by Sector

The following table breaks down the greenhouse gas emissions for each sector by scope. A sector’s carbon footprint is expressed in metric tons of CO2 equivalent for every $1 million in financing.

In other words, here’s how much of a climate impact a one million dollar investment has in each of the following sectors.

The total figure represents the weighted average carbon emissions of each sector’s constituents as of August 10, 2023:

SectorScope 1
Scope 2
Scope 3
Total
Energy263.327.22827.53118.0
Materials298.482.81349.21730.4
Utilities461.416.0405.5883.0
Industrials32.68.3425.1466.0
Consumer
discretionary
5.09.0372.2386.2
Consumer staples16.512.4276.4305.3
Information
technology
2.05.879.387.1
Health care1.82.470.975.1
Financials4.01.158.363.4
Real estate1.45.946.854.0
Communication
services
0.64.740.545.8

Represented by tCO₂e/USD million EVIC. EVIC is the enterprise value including cash.

Understanding carbon footprint profiles can help investors evaluate the risks faced by carbon-intensive industries, such as future regulations and reputational challenges.

MSCI’s climate metrics empower investors to make responsible investments and drive meaningful change.

Visual Capitalist Logo

Download MSCI’s Climate Metrics Report.

Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular