Visualizing America's Electric Vehicle Future
Connect with us

Sponsored

Visualizing America’s Electric Vehicle Future

Published

on

The following content is sponsored by Talon Metals and Li-Cycle

Visualizing America’s Electric Vehicle Future

The U.S. is accelerating its transition to electric vehicles (EV) to address climate change. However, obtaining the minerals and metals required for EV batteries remains a challenge.

In this infographic from Talon Metals and Li-Cycle, we explore the country’s strategy to have vehicles, batteries, and key parts be made in the United States.

Then, we look at how this strategy could be fueled by domestic mining and battery recycling.

The All-Electric America

Gasoline-powered cars are one of the biggest sources of carbon pollution driving the climate crisis. As a result, the Biden Administration has set a target for EVs to make up 50% of all new car sales in the U.S. by 2030. Today, fewer than 1% of the country’s 250 million vehicles are electric.

In November 2021, Congress passed the Bipartisan Infrastructure Deal, which includes:

  • Replacing the government’s 650,000 vehicle motor pool with EVs.
  • Electrifying 20% of the country’s 500,000 school buses.
  • Investing $7.5 billion to build out a network of 500,000 electric vehicle chargers across the country.

The idea also has popular support. According to a poll, 55% of voters in the U.S. support requiring all new cars sold in their state to be electric starting in 2030.

However, rising EV sales are already driving demand for battery metals such as nickel, lithium, and copper, threatening to trigger a shortage of these key raw materials. So, does the U.S. have the raw materials needed to meet this rising demand?

Currently, the U.S. is import-dependent with large parts of the battery supply chain captured by China. Likewise, some essential metals for EVs are currently extracted from countries that have poor labor standards and high CO2 footprints.

Nickel in the Land of Opportunity

The Biden Administration’s 100-day review of critical supply chains recommended the government should prioritize investing in nickel processing capability.

Today, the only operating nickel mine in the U.S., the Eagle Mine in Michigan, ships its concentrates abroad for refining and is scheduled to close in 2025.

To fill the supply gap, Talon Metals is developing the Tamarack Nickel Project in Minnesota, the only high-grade development-stage nickel mine in the country. Tesla has recently signed an agreement to purchase 75,000 metric tonnes of nickel in concentrate from Tamarack.

Since the development and construction of a mine can take many years, recycling is considered an essential source of raw material for EVs.

The Role of Battery Recycling

Battery recycling could meet up to 30% of nickel and 80% of cobalt usage in electric vehicles by the end of the decade.

The bipartisan $1.2 trillion infrastructure bill already sets aside $6 billion for developing battery materials processing capacity in the United States.

By 2030, the U.S. alone is projected to have more than 218,000 tonnes of EV battery manufacturing scrap and 313,000 tonnes of end-of-life EV batteries per year, presenting a massive opportunity for recycling. Currently, Li-Cycle, a leading lithium-ion battery recycler in North America, can process up to 10,000 tonnes of battery material per year—and this capacity is set to grow to up to 30,000 tonnes by the end of 2022.

Li-Cycle also has a hydrometallurgy refinement hub under construction in Rochester, New York, which will process up to the equivalent of 225,000 EV batteries annually into battery-grade lithium, nickel, and cobalt when it is operational in 2023.

America’s Electric Vehicle Future

The auto industry’s future “is electric, and there’s no turning back,” according to President Biden. It’s expected that EV sales in the U.S. will grow from around 500,000 vehicles in 2021 to over 4 million in 2030.

With rising government support and consumers embracing electric vehicles, securing the supply of the materials necessary for the EV revolution will remain a top priority for the country.

Click for Comments

Sponsored

Ranked: Emissions per Capita of the Top 30 U.S. Investor-Owned Utilities

Roughly 25% of all GHG emissions come from electricity production. See how the top 30 IOUs rank by emissions per capita.

Published

on

Emissions per Capita of the Top 30 U.S. Investor-Owned Utilities

Approximately 25% of all U.S. greenhouse gas emissions (GHG) come from electricity generation.

Subsequently, this means investor-owned utilities (IOUs) will have a crucial role to play around carbon reduction initiatives. This is particularly true for the top 30 IOUs, where almost 75% of utility customers get their electricity from.

This infographic from the National Public Utilities Council ranks the largest IOUs by emissions per capita. By accounting for the varying customer bases they serve, we get a more accurate look at their green energy practices. Here’s how they line up.

Per Capita Rankings

The emissions per capita rankings for the top 30 investor-owned utilities have large disparities from one another.

Totals range from a high of 25.8 tons of CO2 per customer annually to a low of 0.5 tons.

UtilityEmissions Per Capita (CO2 tons per year)Total Emissions (M)
TransAlta25.816.3
Vistra22.497.0
OGE Energy21.518.2
AES Corporation19.849.9
Southern Company18.077.8
Evergy14.623.6
Alliant Energy14.414.1
DTE Energy14.229.0
Berkshire Hathaway Energy14.057.2
Entergy13.840.5
WEC Energy13.522.2
Ameren12.831.6
Duke Energy12.096.6
Xcel Energy11.943.3
Dominion Energy11.037.8
Emera11.016.6
PNM Resources10.55.6
PPL Corporation10.428.7
American Electric Power9.250.9
Consumers Energy8.716.1
NRG Energy8.229.8
Florida Power and Light8.041.0
Portland General Electric7.66.9
Fortis Inc.6.112.6
Avangrid5.111.6
PSEG3.99.0
Exelon3.834.0
Consolidated Edison1.66.3
Pacific Gas and Electric0.52.6
Next Era Energy Resources01.1

PNM Resources data is from 2019, all other data is as of 2020

Let’s start by looking at the higher scoring IOUs.

TransAlta

TransAlta emits 25.8 tons of CO2 emissions per customer, the largest of any utility on a per capita basis. Altogether, the company’s 630,000 customers emit 16.3 million metric tons. On a recent earnings call, its management discussed clear intent to phase out coal and grow their renewables mix by doubling their renewables fleet. And so far it appears they’ve been making good on their promise, having shut down the Canadian Highvale coal mine recently.

Vistra

Vistra had the highest total emissions at 97 million tons of CO2 per year and is almost exclusively a coal and gas generator. However, the company announced plans for 60% reductions in CO2 emissions by 2030 and is striving to be carbon neutral by 2050. As the highest total emitter, this transition would make a noticeable impact on total utility emissions if successful.

Currently, based on their 4.3 million customers, Vistra sees per capita emissions of 22.4 tons a year. The utility is a key electricity provider for Texas, ad here’s how their electricity mix compares to that of the state as a whole:

Energy SourceVistraState of Texas
Gas63%52%
Coal29%15%
Nuclear6%9%
Renewables1%24%
Oil1%0%

Despite their ambitious green energy pledges, for now only 1% of Vistra’s electricity comes from renewables compared to 24% for Texas, where wind energy is prospering.

Based on those scores, the average customer from some of the highest emitting utility groups emit about the same as a customer from each of the bottom seven, who clearly have greener energy practices. Let’s take a closer look at emissions for some of the bottom scoring entities.

Utilities With The Greenest Energy Practices

Groups with the lowest carbon emission scores are in many ways leaders on the path towards a greener future.

Exelon

Exelon emits only 3.8 tons of CO2 emissions per capita annually and is one of the top clean power generators across the Americas. In the last decade they’ve reduced their GHG emissions by 18 million metric tons, and have recently teamed up with the state of Illinois through the Clean Energy Jobs Act. Through this, Exelon will receive $700 million in subsidies as it phases out coal and gas plants to meet 2030 and 2045 targets.

Consolidated Edison

Consolidated Edison serves nearly 4 million customers with a large chunk coming from New York state. Altogether, they emit 1.6 tons of CO2 emissions per capita from their electricity generation.

The utility group is making notable strides towards a sustainable future by expanding its renewable projects and testing higher capacity limits. In addition, they are often praised for their financial management and carry the title of dividend aristocrat, having increased their dividend for 47 years and counting. In fact, this is the longest out of any utility company in the S&P 500.

A Sustainable Tomorrow

Altogether, utilities will have a pivotal role to play in decarbonization efforts. This is particularly true for the top 30 U.S. IOUs, who collectively serve 60 million Americans, or one-fifth of the U.S. population.

Ultimately, this means a unique moment for utilities is emerging. As the transition toward cleaner energy continues and various groups push to achieve their goals, all eyes will be on utilities to deliver.

The National Public Utilities Council is the go-to resource to learn how utilities can lead in the path towards decarbonization.

Continue Reading

Sponsored

The Road to Decarbonization: How Asphalt is Affecting the Planet

The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills.

Published

on

Road to Decarbonization - How Asphalt is Affecting the Planet

The Road to Decarbonization: How Asphalt is Affecting the Planet

Asphalt, also known as bitumen, has various applications in the modern economy, with annual demand reaching 110 million tons globally.

Until the 20th century, natural asphalt made from decomposed plants accounted for the majority of asphalt production. Today, most asphalt is refined from crude oil.

This graphic, sponsored by Northstar Clean Technologies, shows how new technologies to reuse and recycle asphalt can help protect the environment.

The Impact of Climate Change

Pollution from vehicles is expected to decline as electric vehicles replace internal combustion engines.

But pollution from asphalt could actually increase in the next decades because of rising temperatures in some parts of the Earth. When subjected to extreme temperatures, asphalt releases harmful greenhouse gases (GHG) into the atmosphere.

Emissions from Road Construction (Source) CO2 equivalent (%)
Asphalt 28%
Concrete18%
Excavators and Haulers16%
Trucks13%
Crushing Plant 10%
Galvanized Steel 6%
Reinforced Steel6%
Plastic Piping 2%
Geotextile1%

Asphalt paved surfaces and roofs make up approximately 45% and 20% of surfaces in U.S. cities, respectively. Furthermore, 75% of single-family detached homes in Canada and the U.S. have asphalt shingles on their roofs.

Reducing the Environmental Impact of Asphalt

Similar to roads, asphalt shingles have oil as the primary component, which is especially harmful to the environment.

Shingles do not decompose or biodegrade. The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills, the equivalent of 20 million barrels of oil.

But most of it can be reused, rather than taking up valuable landfill space.

Using technology, the primary components in shingles can be repurposed into liquid asphalt, aggregate, and fiber, for use in road construction, embankments, and new shingles.

Providing the construction industry with clean, sustainable processing solutions is also a big business opportunity. Canada alone is a $1.3 billion market for recovering and reprocessing shingles.

Northstar Clean Technologies is the only public company that repurposes 99% of asphalt shingles components that otherwise go to landfills.

Continue Reading

Subscribe

Popular