Chart: The Carbon Footprint of the Food Supply Chain
Connect with us

Green

The Carbon Footprint of the Food Supply Chain

Published

on

carbon footprint food supply chain

Which Foods Have the Greatest Environmental Impact?

The quantity of greenhouse gases (GHGs) generated by our food can vary considerably across the global food supply chain.

In fact, the difference between specific food types can vary by orders of magnitude, meaning what we eat could be a significant factor impacting GHG emissions on the environment.

Today’s modified chart from Our World in Data relies on data from the largest meta-analysis of food systems in history. The study, published in Science was led by Joseph Poore and Thomas Nemecek to highlight the carbon footprint across different food types across the world.

The Foods With the Highest Carbon Footprint

Worldwide, there are approximately 13.7 billion metric tons of carbon dioxide equivalents (CO2e) emitted through the food supply chain per year.

Across a database extending through 119 countries and 38,000 commercial farms, the study found that, unsurprisingly, beef and other animal products have an outsize effect on emissions.

For example, one kilogram (kg) of beef results in 60 kg of GHG emissions—nearly 2.5x the closest food type, lamb and mutton. In contrast, the same weight of apples produce less than one kilogram of GHG emissions.

Food TypeGHG Emissions per 1 kg Produced
Beef (beef herd)60 kgCO2e
Lamb & Mutton24 kgCO2e
Cheese21 kgCO2e
Beef (dairy herd)21 kgCO2e
Chocolate19 kgCO2e
Coffee17 kgCO2e
Prawns (farmed)12 kgCO2e
Palm Oil8 kgCO2e
Pig Meat7 kgCO2e
Poultry Meat6 kgCO2e
Olive Oil6 kgCO2e
Fish (farmed)5 kgCO2e
Eggs4.5 kgCO2e
Rice4 kgCO2e
Fish (wild catch)3 kgCO2e
Milk3 kgCO2e
Cane Sugar3 kgCO2e
Groundnuts2.5 kgCO2e
Wheat & Rye1.4 kgCO2e
Tomatoes1.4 kgCO2e
Maize (Corn)1.0 kgCO2e
Cassava1.0 kgCO2e
Soymilk0.9 kgCO2e
Peas0.9 kgCO2e
Bananas0.7 kgCO2e
Root Vegetables0.4 kgCO2e
Apples0.4 kgCO2e
Citrus Fruits0.3 kgCO2e
Nuts0.3 kgCO2e

When it comes to plant-based foods, chocolate is among the highest GHG emitters. One kilogram of chocolate produces 19 kg of GHGs. On average, emissions from plant-based foods are 10 to 50 times lower than animal-based types.

Bottom line, it is clear that the spectrum of emissions differs significantly across each food type.

Food Supply Chain Stages

The food supply chain is complex and nuanced as it moves across each stage of the cycle.

Although the steps behind the supply chain for individual foods can vary considerably, each typically has seven stages:

  1. Land Use Change
  2. Farm
  3. Animal Feed
  4. Processing
  5. Transport
  6. Retail
  7. Packaging

Across all foods, the land use and farm stages of the supply chain account for 80% of GHG emissions. In beef production, for example, there are three key contributing factors to the carbon footprint at these stages: animal feed, land conversion, and methane production from cows. In the U.S., beef production accounts for 40% of total livestock-related land use domestically.

On the other end of the spectrum is transportation. This stage of the supply chain makes up 10% of total GHG emissions on average. When it comes to beef, the proportion of GHGs that transportation emits is even smaller, at just 0.5% of total emissions.

Contrary to popular belief, sourcing food locally may not help GHG emissions in a very significant way, especially in the case of foods with a large carbon footprint.

The Rise of Plant-Based Alternatives

Amid a growing market share of plant-based alternatives in markets around the world, the future of the food supply chain could undergo a significant transition.

For investors, this shift is already evident. Beyond Meat, a leading provider of meat substitutes, was one of the best performing stocks of 2019—gaining 202% after its IPO in May 2019.

As rising awareness about the environment becomes more prevalent, is it possible that growing meat consumption could be a thing of the past?

Click for Comments

Green

Mapped: 30 Years of Deforestation and Forest Growth, by Country

Where are the world’s forests still shrinking, and where are they seeing net gains? We map deforestation by country between 1990-2020.

Published

on

Global Deforestation and Forest Growth over 30 Years

Forests are the great carbon capturers of our planet, and they are a key source of wildlife habitats and vital resources for people around the world.

But deforestation is threatening this natural infrastructure, releasing carbon into the atmosphere while simultaneously reducing wildlife diversity and making our environment more susceptible to environmental disasters.

This graphic looks at global deforestation and forest growth over the past 30 years, mapping out the net forest change by country and region using data from the UN’s Food and Agriculture Organization (FAO).

The State of Deforestation by Region

Today, forests make up around 31% of the Earth’s total land area, spanning 15.68 million square miles (40.6 million km²). Over the past three decades, the world lost a bit more than 4% (685,300 square miles) of its forests, which equates to an area about half the size of India.

Europe and Asia were the only two regions which had significant overall forest growth during this time period, while Oceania saw no significant change and North and Central America saw a slight reduction.

RegionForest area change (1990-2020)Percentage change in forest area
Asia+146,718 sq mi+6.64%
Europe+88,803 sq mi+2.34%
Oceania+1,057 sq mi+0.0015%
North America and Central America-7,722 sq mi-0.34%
South America and the Caribbean-501,932 sq mi-13.30%
Africa-409,268 sq mi-14.29%
Global total-685,401 sq mi-4.19%

Source: UN Food and Agriculture Organization

Africa along with South America and the Caribbean were the regions with the greatest amount of net forest loss, both losing more than 13% of their forests over the past 30 years. This is largely because these two regions have large amounts of forest area available, with the underlying land in high demand for agriculture and cattle-raising.

Although the overall forest loss around the world is massive, the rate of forest loss has slowed down over the past three decades. While an average of 30,116 square miles were lost each year between 1990 to 2000, between 2010 to 2020 that number has dropped to 18,146 square miles, showing that the rate of overall loss has fallen by almost 40%.

The Countries and Drivers of Deforestation and Forest Growth

Despite an overall slowing down of forest loss, certain countries in South America along with the entirety of Africa are still showing an increase in the rate of forest loss. It’s in these regions where most of the countries with the largest reduction in forest area are located:

CountryNet change in forest area (1990-2020)Percentage change in forest area
Brazil-356,287 sq mi-15.67%
Indonesia-101,977 sq mi-22.28%
Democratic Republic of the Congo-94,495 sq mi-16.25%
Angola-48,865 sq mi-15.97%
Tanzania-44,962 sq mi-20.29%
Myanmar-41,213 sq mi-27.22%
Paraguay-36,463 sq mi-36.97%
Bolivia-26,915 sq mi-12.06%
Mozambique-25,614 sq mi-15.29%
Argentina-25,602 sq mi-18.84%

Source: UN Food and Agriculture Organization

Brazil, home to most of the Amazon rainforest, saw 356,287 square miles of net forest loss, largely fueled by farmers using the land to raise cattle for beef. It’s estimated that 80% of the deforested land area of the Amazon has been replaced with pastures, with the resulting beef production known to be among the worst meats for the environment in terms of carbon emissions.

The other great driver of deforestation is seed and palm oil agriculture. These oils account for about 20% of the world’s deforestation carbon emissions, and their production concentrated in Indonesia and Malaysia is now expanding to other Asian countries along with Africa.

While the demand for beef and palm oils drives deforestation, initiatives like the Central African Forest Initiative (CAFI) are providing incentives to protect forest land.

Select countries in the European Union along with the United Kingdom and South Korea have committed $494.7 million to six central African nations (Cameroon, Gabon, Central African Republic, Democratic Republic of the Congo, Equatorial Guinea, and the Republic of Congo) for them to preserve their forests and pursue low emission pathways for sustainable development. The initiative has seen $202 million transferred thus far and an anticipated reduction of 75 million tons of CO2 emissions.

Forests and the Climate Crisis

It’s estimated that forests absorb around 30% of the world’s carbon emissions each year, making them the greatest and most important carbon sinks we have on land. When you pair this with the fact that deforestation contributes around 12% of annual greenhouse gas emissions, the importance of forest preservation becomes even more clear.

But we often forget how much forests protect our environment by acting as natural buffers against extreme weather. Forests increase and ensure rainfall security, making nearby land areas significantly less susceptible to wildfires and natural droughts in hot and dry seasons along with flooding and landslides in wet seasons.

With every dollar invested in landscape restoration yielding up to $30 in benefits, reducing deforestation and investing in reforestation is considered an effective way to reduce the difficulty and costs of meeting climate and environmental protection goals. This is without even considering the benefits of maintaining the world’s largest wildlife habitat and source of species diversity, the home of the nearly 70 million indigenous people who live in forests, and the livelihood of 1.6 billion people who rely on forests every day.

Preserving and Regrowing Forests for the Future

Despite the short-term acceleration in forest loss seen in 2020, there have been positive signs about forest regrowth coming to light. A recent study found that previously deforested land can recuperate its soil fertility in about a decade, and layered plants, trees, and species diversity can recover in around 25-60 years.

Along with this, in some instances these regrowing “secondary forests” can absorb more carbon dioxide than “primary forests”, giving hope that a global reforestation effort can absorb more emissions than previously thought possible.

From better financial incentives for local farmers and ranchers to preserve forest area to larger scale policies and initiatives like CAFI, curbing deforestation and promoting reforestation requires a global effort. Reversing forest loss in the coming decades is a daunting but necessary step towards stabilizing the climate and preserving the environment that billions of animals and people rely on.

Continue Reading

Agriculture

Mapped: Food Production Around the World

Where does your favorite food come from? Here’s an interactive look at global food production.

Published

on

global food production

Mapping the World’s Food Production

In a world of nearly 8 billion people, food security is one of the greatest challenges we face.

Roughly 700 million people suffer from hunger every day, lacking access to staple foods like maize, rice, and wheat. While many people often take the availability of food for granted, it’s worth taking a moment to identify and acknowledge where the food we consume comes from.

From staple crops to exotic fruit, this interactive map from Our World in Data shows global food production using data from the United Nations Food and Agriculture Organization (FAO).

A Closer Look at Staple Food Production

Which countries produce the foods that we eat every day? Here’s a look at the top producers of three of the world’s most important staple foods.

Maize (Corn)

Corn or maize is the most widely-grown crop in the Americas, with uses in various industries. While the crop is native to Central America, it is grown in all parts of the world.

Country2019 Production (million tonnes)% of Global Production
U.S. 🇺🇸347.030.2%
China 🇨🇳260.822.7%
Brazil 🇧🇷101.18.8%
Argentina 🇦🇷56.94.9%
Ukraine 🇺🇦35.93.1%

The U.S. is by far the largest corn producer and exporter, with large amounts of corn coming from the states of Iowa, Illinois, and Nebraska. Over 90 million acres of land is used to grow corn, an area nearly the size of Montana.

The U.S. is also the largest consumer of corn, followed by China, the second-largest producer and consumer.

Wheat

First domesticated in the Middle East, wheat is a versatile crop that grows well in temperate climates. Wheat is usually milled into flour, which is then used to make bread, pasta noodles, biscuits, and other common foods.

Country2019 Production (million tonnes)% of Global Production
China 🇨🇳133.617.4%
India 🇮🇳103.613.5%
Russia 🇷🇺74.59.7%
U.S. 🇺🇸52.36.8%
France 🇫🇷40.65.3%

China and India combined for nearly 31% of global wheat production in 2019, with Russia, the U.S., and France producing smaller but significant amounts of the crop.

Rice

Chinese hunter-gatherers first cultivated rice 9,400 years ago along the banks of the Yangtze River. It’s now the third most-produced crop in the world and a staple food for over 3.5 billion people, primarily in Asia.

Country2019 Production (million tonnes)% of Global Production
China 🇨🇳209.627.7%
India 🇮🇳177.723.5%
Indonesia 🇮🇩54.67.2%
Bangladesh 🇧🇩54.67.2%
Vietnam 🇻🇳43.55.8%

It’s no surprise that the countries with the biggest populations are the top producers of rice. Furthermore, 9 of the top 10 rice producers are in Asia, which is a testament to how important it is for people living in the region.

While maize, wheat, and rice are important staple foods, our diets are shaped by various factors, including geography and culture. Explore the origins of the foods you like using the above interactive visualization.

How to Use the Interactive

For an overview of food production for a particular crop, select the crop using the “Food” drop-down menu, and the map will update automatically. Countries with darker shades of green produce more of the crop, and vice versa. You can hover over countries to see more in-depth production statistics.

food production

To zoom into a specific continent, use the drop-down menu on the right where “World” is selected, and select a region of your choice.

For a historical overview of food production, click the play icon on the bottom left corner of the map, and you’ll see how the biggest producers of a crop changed over time.

food production

By clicking the “Chart” button on the bottom left, and selecting the country (or countries) of your choice, you can see production trends over time. You can also look at the data in a tabular format by clicking on the “Table” button.

Continue Reading

Subscribe

Popular