Connect with us

Misc

Timelapse Maps: An Overview of Our Changing Planet

Published

on

The dramatic growth of Dubai, UAE (1984–2018)

timelapse map

Humankind’s impact on the world is obvious, but our spatial patterns are sometimes difficult to recognize from the ground.

Publicly accessible, high-quality satellite imagery has been a game changer in terms of understanding the scope of forces such as urbanization and land use patterns.

Google Timelapse Maps

Google Earth’s timelapsed satellite maps capture the drastic changes the planet’s surface has undergone over the past 34 years. Each timelapse comprises 35 cloud-free pictures, which have been made interactive by the CREATE Lab at Carnegie Mellon University.

Three different satellites acquired 15 million images over the past three decades. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program. For the years 2015 to 2018, Google combined imagery from Landsat 8 and Sentinel-2A. Sentinel is part of the European Commission and European Space Agency’s Copernicus Earth observation program.

Deforestation, urban growth, and natural resource extraction are just some of the human patterns and impacts that can be visualized.

Editor’s note: to view the following timelapses, press the play button on any map. You can also view individual years in the time periods as well. On slower internet connections you may need to have patience, as the series of images can take some time to load or display.

Cities and Infrastructure

Urban Growth: Pearl River Delta, China

Up to 1979, China’s Pearl River Delta had seen little urbanization. However in 1980, the People’s Republic of China established a special economic zone, Shenzhen, to attract foreign investment. In the following years, buildings and paved surfaces rapidly replaced the rural settings around the river delta. This is the Lunjiao area just south of Guangzhou.

Urban Growth: Cairo, Egypt

The present-day location of Cairo has been a city for more than 1,000 years, and its constrained urban footprint is now bursting at the seams thanks to Egypt’s population growth. A new city is being built in the nearby stretch of desert land (agricultural land is scarce) that will one day replace ancient Cairo as Egypt’s capital. If the government’s ambitious plans are realized, this desert boomtown could have a population of over 6 million people.

The Egyptian state needed this kind of project a long time ago. Cairo [is] a capital that is full of traffic jams, very crowded. The infrastructure cannot absorb more people.

– Khaled el-Husseiny Soliman

Urban Growth: Phoenix, Arizona

According to estimates from the U.S. Census Bureau, Phoenix is the fastest-growing city in the United States. Over the past two decades, the suburb of Chandler evolved from agricultural uses to sprawling residential developments. This pattern was repeated in a number of cities in the Southern U.S., most notably Las Vegas.

Construction: The Brandenburg Airport, Germany

Berlin’s long overdue Brandenburg Airport began construction in 2006, with the airport initially expected to open in 2011. However, the airport has been subject to numerous delays and the airport now has a new opening date. Berlin Brandenburg Airport is now expected to open on Oct. 31, 2020.

Megaproject: Yangshan Port

The Port of Shanghai became one of the most important transportation hubs in the world after the completion of its offshore expansion – the Yangshan Port.

Building this massive port was a gargantuan engineering feat. First, land reclamation was used to connect two islands 20 miles southeast of Shanghai. Next, the port was connected to the mainland via the Donghai Bridge, which opened in 2005 as the world’s longest sea crossing. The six-lane bridge took 6,000 workers two and half years to construct.

In 2016, the Port of Shanghai was the largest shipping port in the world, handling 37.1 million twenty-foot container equivalents.

Resource Extraction

Mining: Chuquicamata, Chile

Chuquicamata is the largest open pit copper mine by volume in the world, located 800 miles north of the Chilean capital, Santiago. In 2019, Chile’s national mining company Codelco initiated underground mining at Chuquicamata.

Deforestation: Ñuflo de Chávez, Bolivia

Ñuflo de Chávez is one of the 15 provinces of the Bolivian Santa Cruz Department. Satellite images of southern Ñuflo de Chávez illustrate deforestation from agrarian expansion in the jungles of the Amazon. From the air, the deforestation takes on a unique grid pattern with circular clearings. Developed as part of an organized resettlement scheme, each circle is anchored by community amenities and housing, and surrounded by fields of soybeans cultivated for export.

According to Brazil’s National Institute for Space Research, 8.4 million soccer fields of land have been deforested in the Amazon over the past decade.

Shale Gas Boom: Odessa, Texas

The small town of Odessa sits in the middle of one of the most productive shale gas regions in the world, the Permian Basin. The region is expected to generate an average of 3.9 million barrels per day, roughly a third of total U.S. oil production. While the gas may come from underground, the pursuit of this source of energy has drastically altered the landscape, marking the terrain with roads, wells, and housing for workers.

Changing Environment

Drying of the Aral Sea: Kazakhstan and Uzbekistan

It took almost 30 years to make a sea disappear. When the Soviet Union diverted the Amu Darya and Syr Darya rivers to irrigate cotton and rice fields in the 1960s, it turned the Aral Sea into a desert. Once the world’s fourth largest lake, the region is struggling to restore water levels and aquatic habitats.

Glacier Retreat: Columbia Glacier, Alaska, USA

The Columbia Glacier is a tidewater glacier that flows through the valleys of the Chugach Mountains and into Alaska’s Prince William Sound. Increased temperatures initiated a retreat in the length of the glacier over three decades ago. Once in motion, a glacier’s retreat accelerates due to glacial mechanics. It is one of the most rapidly changing glaciers in the world.

Changing Rivers: Iquitos, Peru

Not all change is from humans. There are natural physical processes that continue to shape the Earth’s surface. For example, rivers that experience heavy water flows can be altered through erosion, changing the bends.

Better Perspectives, Better Decisions?

Often, the greatest impacts that occur are out of sight and mind. However, with the increasing availability of satellite technology and improved distribution of images through platforms such as Google Timelapse, the impact of human activity is impossible to ignore.

The bulk of visible changes come from human economic activity, because it is more easily observable on a smaller time scale. However, it’s also worth remembering that there are still many natural processes that take generations, if not thousands of years to affect change.

It is one thing to hear the facts and figures of humankind’s impact on the environment, but to see the change is a whole other story.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Misc

The 44 Closest Stars and How They Compare to our Sun

This graphic visualizes the 44 closest stars, revealing key facts such as distance from Earth, brightness, and whether potential planets are in orbit.

Published

on

44 closest stars

44 Closest Stars and How They Compare to our Sun

Humans have been fascinated by the stars in the night sky since the dawn of time.

We’ve been decoding the mysteries of celestial bodies for many centuries, but it is only in the last 200 years or so that we’ve been able to glean more detailed information on the lights that dot the night sky. Friedrich Bessel’s method of stellar parallax was a breakthrough in accurately measuring the positions of stars, and opened new doors in the effort to map our universe. Today, high-powered telescopes offer even more granular data on our cosmic neighborhood.

The infographic above, from Alan’s Factory Outlet, categorizes the 44 closest stars to Earth, examining the size, luminosity, constellations, systems, and potential planets of each star.

Our Nearest Stellar Neighbors

Our closest neighboring stars are all part of the same solar system: Alpha Centauri. This triple star system – consisting of Proxima Centauri, Alpha Centauri A, and Alpha Centauri B – attracts a lot of interest because it hosts planets, including one that may be similar to Earth.

The planet, Proxima Centauri b, is a lot closer to its star than Earth is to the Sun. However, because Proxima Centauri is a smaller and cooler red dwarf type star, the planet’s orbit is within the habitable zone. It’s thought that Proxima Centauri b receives approximately the same amount of solar energy as Earth does from our Sun.

Here’s a full list of the 44 of the closest stars to Earth:

Star NameDistance (light years)MoE
Sun0.000016±0.0011
Proxima Centauri4.37±0.0068
α Centauri A4.37±0.0068
α Centauri B4.37±0.0068
Barnard's Star5.96±0.0032
Wolf 3597.86±0.031
Lalande 211858.31±0.014
Sirius A8.66±0.010
Sirius B8.66±0.010
Luyten 726-8 A8.79±0.012
Luyten 726-8 B8.79±0.012
Ross 1549.70±0.0019
Ross 24810.29±0.0041
Epsilon Eridani10.45±0.016
Lacaille 935210.72±0.0016
Ross 12811.01±0.0026
EZ Aquarii A11.11±0.034
61 Cygni A11.40±0.0012
61 Cygni B11.40±0.0012
Procyon A11.40±0.032
Procyon B11.40±0.032
Struve 2398 A11.49±0.0012
Struve 2398 B11.49±0.0012
Groombridge 34 A11.62±0.0008
Groombridge 34 B11.62±0.0008
DX Cancri11.68±0.0056
Tau Ceti11.75±0.022
Epsilon Indi11.87±0.011
Gliese 106111.98±0.0029
YZ Ceti12.11±0.0035
Luyten's Star12.20±0.036
Teegarden's Star12.50±0.013
SCR 1845-635713.05±0.008
Kapteyn's Star12.83±0.0013
Lacaille 876012.95±0.0029
Kruger 60 A13.07±0.0052
Kruger 60 B13.07±0.0052
Wolf 106114.05±0.0038
Wolf 424 A14.05±0.26
Van Maanen's star14.07±0.0023
Gliese 114.17±0.0037
TZ Arietis14.58±0.0070
Gliese 67414.84±0.0033
Gliese 68714.84±0.0022

Even though we see many of these stars in the night sky, humans aren’t likely to see them in person any time soon. To put these vast distances into perspective, if the Voyager spacecraft were to travel to Proxima Centauri, it would take over 73,000 years to finally arrive.

The Brightest Stars in the Sky

The closest stars aren’t necessarily the ones most visible to us here on Earth. Here are the top 10 stars in terms of visual brightness from Earth:

RankProper nameConstellationVisual magnitude (mV)Distance (light years)
1SunN/A−26.740.000016
2SiriusCanis Major−1.468.6
3CanopusCarina−0.74310.0
4Rigil Kentaurus & TolimanCentaurus−0.27 (0.01 + 1.33)4.4
5ArcturusBoötes−0.0537.0
6VegaLyra0.03 (−0.02–0.07var)25.0
7CapellaAuriga0.08 (0.03–0.16var)43.0
8RigelOrion0.13 (0.05–0.18var)860.0
9ProcyonCanis Minor0.3411.0
10AchernarEridanus0.46 (0.40–0.46var)139.0

Excluding our Sun, the brightest star visible from Earth is Sirius, or the Dog Star. Sirius, which is about 25 times more luminous than the sun, visually punctuates the constellation Canis Major.

Filling in the Gaps

The next step in learning more about our surroundings in the cosmos will be seeing which of the stars listed above have planets orbiting them. So far, the 44 stars in the infographic have over 40 planets scattered among them, though new discoveries are made all the time.

With each new mission and discovery, we learn a little bit more about our pocket of the universe.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Politics

Visualizing the True Size of Land Masses from Largest to Smallest

Maps can distort the size and shape of countries. This visualization puts the true size of land masses together from biggest to smallest.

Published

on

The True Size of Land Masses from Largest to Smallest

Is Greenland the size of the entire African continent?

No…

But looking at a map based on the Mercator projection, you would think so.

Today’s infographic comes from the design studio Art.Lebedev and shows the true size of the world’s land masses in order from largest to smallest using data from NASA and Google.

Check out the actual shape and size of each land mass without any distortions.

Distorting Reality: Mercator Misconceptions

Maps can deceive your eyes but they are still powerful tools for specific purposes. In 1569, the legendary cartographer, Gerardus Mercator, created a new map based on a cylindrical projection of sections of the Earth. These types of maps were suited for nautical navigation since every line on the sphere is a constant course, or loxodrome.

Despite the map’s nautical utility, the Mercator projection has an unwanted downside. The map type increases the sizes of land masses close to the poles (such as in North America, Europe, or North Asia) as a side effect. As a result, Canada and Russia appear to take up approximately 25% of the Earth’s surface, when in reality these nations only occupy 5%.

“Things are not always what they seem; the first appearance deceives many.” – Phaedrus

This collection of images above represents the world’s land masses in their correct proportions. Measurements are based on Google Maps 2016 and NASA Earth Observatory maps, with calculations based on the WGS84 reference ellipsoid, or more simply, a specific model of the Earth’s shape in two dimensions.

We take for granted Google Maps and satellite imaging. Making these accurate representations is no small task – the designers went through six steps and many different iterations of the graphic.

Countries are arranged by descending size and shown without external or dependent territories. For example, the total area for the contiguous United States shown does not include Hawaii, Alaska, or overseas territories.

Top 10 Largest Land Masses

Although Mercator maps distort the size of land masses in the Northern Hemisphere, many of these countries still cover massive territories.

JurisdictionArea (km²)
Russia16,440,626
Antarctica12,269,609
China9,258,246
Canada8,908,366
Brazil8,399,858
United States (contiguous)7,654,643
Australia7,602,329
India3,103,770
Argentina2,712,060
Kazakhstan2,653,464

The top 10 land masses by size account for 55% of the Earth’s total land. The remainder is split by the world’s 195 or so other countries.

Top 10 Smallest Land Masses

Here are the 10 tiniest jurisdictions highlighted on the map:

JurisdictionArea (km²)
Sealand0.001
Kingman Reef0.002
Vatican City0.5
Kure Atoll0.9
Tromelin Island1
Johnston Atoll1
Baker Island1
Howland Island2
Monaco2
Palmyra Atoll3

While the Earth’s land surface has been claimed by many authorities, the actual impact of human activity is less than one would think.

Human Impact: Humbled by Nature

Political borders have claimed virtually every piece of land available. Despite this, only 20% of land on the planet has been visibly impacted by human activity, and only 15% of Earth’s land surface is formally under protection.

The remaining 80% of the land hosts natural ecosystems that help to purify air and water, recycle nutrients, enhance soil fertility, pollinate plants, and break down waste products. The value of maintaining these services to the human economy is worth trillions of U.S. dollars each year.

While some nations are not as big as they look on the map, every piece of land counts.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
New York Life Investments Company Spotlight

Subscribe

Join the 180,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular