Mining
The World’s Most Famous Diamonds
The World’s Most Famous Diamonds
The stories and histories of the most famous diamonds
You may have heard of the Cullinan Diamond or the Hope Diamond before, but do you know the stories behind these legendary finds?
Today’s infographic looks at the history and characteristics of six of the most famous diamonds.
A Diamond Primer
Every diamond is unique, and as a result the value of a particular diamond is partially determined by the eye of the beholder. The diamond industry generally uses a set of criteria called the Four C’s to help evaluate the potential value of a diamond: Clarity, Cut, Carats, and Color.
Most diamonds found have major deficiencies in one or more of the above categories. For example, while a diamond may be clear and large in size, it may have a less desirable color and shape. In a previous infographic, we explain the importance of these characteristics in more depth, and we’ve also previously posted on the significance of rare-colored diamonds.
The most famous diamonds in the world are exceptionally rare: they tend to excel in all four of the above categories. They are a desired color and shape, have great clarity, and are giant in size.
The Most Famous Diamonds
The stories behind six of the most famous diamonds in brief:
The Cullinan Diamond: Perhaps the most well-known, the Cullinan Diamond was discovered in 1905 in South Africa. Weighing in at 3,106.75 carats, the Cullinan is the largest rough gem-quality diamond ever discovered. The diamond was ultimately cut into nine smaller stones including the 530.20 carat Star of Africa, which is valued at over $400 million alone.
The Hope Diamond: The Hope Diamond is a grayish-blue diamond that was discovered in India at an unknown date. It has a long history, in which it changed hands numerous times between countries and eventually ended up at the Smithsonian Institute in Washington, D.C.
The Centenary Diamond: The Centenary Diamond is considered to be one of the most flawless diamonds, both internally and externally. Discovered in South Africa, it was unveiled in its final form by De Beers in 1991. The current owner is unknown.
The Regent Diamond: This pale blue diamond was discovered by a slave in India in 1698. After eventually making it to the crowns of Louis XV and Louis XVI in France, it is now on display at the Louvre in Paris and weighs 140.64 carats.
The Koh-i-Noor Diamond: Meaning “Mountain of Light” in the Persian language, this diamond was discovered at a mine in India. It is of the finest white color, and made its way from a Hindu temple eventually to the Crown of Queen Elizabeth in 1850.
The Orlov Diamond: Discovered in India at an unknown date, this jewel retains its traditional Indian rose-style cut. The Orlov, which weighs in at 189.62 carats and is white with a faint bluish-green color, now rests in the Kremlin in Russia.
The world’s most famous diamonds all have intriguing stories behind their discoveries. However, a diamond prospector doesn’t need to find a diamond to strike it rich: check out the infographic story of Diamond Fields, a diamond company that ended up finding and auctioning off one of the world’s richest nickel deposits for billions.
Original graphic by: Gear Jewellers
Mining
Visualizing the Uranium Mining Industry in 3 Charts
These visuals highlight the uranium mining industry and its output, as well as the trajectory of nuclear energy from 1960 to today.

When uranium was discovered in 1789 by Martin Heinrich Klaproth, it’s likely the German chemist didn’t know how important the element would become to human life.
Used minimally in glazing and ceramics, uranium was originally mined as a byproduct of producing radium until the late 1930s. However, the discovery of nuclear fission, and the potential promise of nuclear power, changed everything.
What’s the current state of the uranium mining industry? This series of charts from Truman Du highlights production and the use of uranium using 2021 data from the World Nuclear Association (WNA) and Our World in Data.
Who are the Biggest Uranium Miners in the World?
Most of the world’s biggest uranium suppliers are based in countries with the largest uranium deposits, like Australia, Kazakhstan, and Canada.
The largest of these companies is Kazatomprom, a Kazakhstani state-owned company that produced 25% of the world’s new uranium supply in 2021.
As seen in the above chart, 94% of the roughly 48,000 tonnes of uranium mined globally in 2021 came from just 13 companies.
Rank | Company | 2021 Uranium Production (tonnes) | Percent of Total |
---|---|---|---|
1 | 🇰🇿 Kazatomprom | 11,858 | 25% |
2 | 🇫🇷 Orano | 4,541 | 9% |
3 | 🇷🇺 Uranium One | 4,514 | 9% |
4 | 🇨🇦 Cameco | 4,397 | 9% |
5 | 🇨🇳 CGN | 4,112 | 9% |
6 | 🇺🇿 Navoi Mining | 3,500 | 7% |
7 | 🇨🇳 CNNC | 3,562 | 7% |
8 | 🇷🇺 ARMZ | 2,635 | 5% |
9 | 🇦🇺 General Atomics/Quasar | 2,241 | 5% |
10 | 🇦🇺 BHP | 1,922 | 4% |
11 | 🇬🇧 Energy Asia | 900 | 2% |
12 | 🇳🇪 Sopamin | 809 | 2% |
13 | 🇺🇦 VostGok | 455 | 1% |
14 | Other | 2,886 | 6% |
Total | 48,332 | 100% |
France’s Orano, another state-owned company, was the world’s second largest producer of uranium at 4,541 tonnes.
Companies rounding out the top five all had similar uranium production numbers to Orano, each contributing around 9% of the global total. Those include Uranium One from Russia, Cameco from Canada, and CGN in China.
Where are the Largest Uranium Mines Found?
The majority of uranium deposits around the world are found in 16 countries with Australia, Kazakhstan, and Canada accounting for for nearly 40% of recoverable uranium reserves.
But having large reserves doesn’t necessarily translate to uranium production numbers. For example, though Australia has the biggest single deposit of uranium (Olympic Dam) and the largest reserves overall, the country ranks fourth in uranium supplied, coming in at 9%.
Here are the top 10 uranium mines in the world, accounting for 53% of the world’s supply.
Of the largest mines in the world, four are found in Kazakhstan. Altogether, uranium mined in Kazakhstan accounted for 45% of the world’s uranium supply in 2021.
Uranium Mine | Country | Main Owner | 2021 Production |
---|---|---|---|
Cigar Lake | 🇨🇦 Canada | Cameco/Orano | 4,693t |
Inkai 1-3 | 🇰🇿 Kazakhstan | Kazaktomprom/Cameco | 3,449t |
Husab | 🇳🇦 Namibia | Swakop Uranium (CGN) | 3,309t |
Karatau (Budenovskoye 2) | 🇰🇿 Kazakhstan | Uranium One/Kazatomprom | 2,561t |
Rössing | 🇳🇦 Namibia | CNNC | 2,444t |
Four Mile | 🇦🇺 Australia | Quasar | 2,241t |
SOMAIR | 🇳🇪 Niger | Orano | 1,996t |
Olympic Dam | 🇦🇺 Australia | BHP Billiton | 1,922t |
Central Mynkuduk | 🇰🇿 Kazakhstan | Ortalyk | 1,579t |
Kharasan 1 | 🇰🇿 Kazakhstan | Kazatomprom/Uranium One | 1,579t |
Namibia, which has two of the five largest uranium mines in operation, is the second largest supplier of uranium by country, at 12%, followed by Canada at 10%.
Interestingly, the owners of these mines are not necessarily local. For example, France’s Orano operates mines in Canada and Niger. Russia’s Uranium One operates mines in Kazakhstan, the U.S., and Tanzania. China’s CGN owns mines in Namibia.
And despite the African continent holding a sizable amount of uranium reserves, no African company placed in the top 10 biggest companies by production. Sopamin from Niger was the highest ranked at #12 with 809 tonnes mined.
Uranium Mining and Nuclear Energy
Uranium mining has changed drastically since the first few nuclear power plants came online in the 1950s.
For 30 years, uranium production grew steadily due to both increasing demand for nuclear energy and expanding nuclear arsenals, eventually peaking at 69,692 tonnes mined in 1980 at the height of the Cold War.
Nuclear energy production (measured in terawatt-hours) also rose consistently until the 21st century, peaking in 2001 when it contributed nearly 7% to the world’s energy supply. But in the years following, it started to drop and flatline.
By 2021, nuclear energy had fallen to 4.3% of global energy production. Several nuclear accidents—Chernobyl, Three Mile Island, and Fukushima—contributed to turning sentiment against nuclear energy.
Year | Nuclear Energy Production | % of Total Energy |
---|---|---|
1965 | 72 TWh | 0.2% |
1966 | 98 TWh | 0.2% |
1967 | 116 TWh | 0.2% |
1968 | 148 TWh | 0.3% |
1969 | 175 TWh | 0.3% |
1970 | 224 TWh | 0.4% |
1971 | 311 TWh | 0.5% |
1972 | 432 TWh | 0.7% |
1973 | 579 TWh | 0.9% |
1974 | 756 TWh | 1.1% |
1975 | 1,049 TWh | 1.6% |
1976 | 1,228 TWh | 1.7% |
1977 | 1,528 TWh | 2.1% |
1978 | 1,776 TWh | 2.3% |
1979 | 1,847 TWh | 2.4% |
1980 | 2,020 TWh | 2.6% |
1981 | 2,386 TWh | 3.1% |
1982 | 2,588 TWh | 3.4% |
1983 | 2,933 TWh | 3.7% |
1984 | 3,560 TWh | 4.3% |
1985 | 4,225 TWh | 5% |
1986 | 4,525 TWh | 5.3% |
1987 | 4,922 TWh | 5.5% |
1988 | 5,366 TWh | 5.8% |
1989 | 5,519 TWh | 5.8% |
1990 | 5,676 TWh | 5.9% |
1991 | 5,948 TWh | 6.2% |
1992 | 5,993 TWh | 6.2% |
1993 | 6,199 TWh | 6.4% |
1994 | 6,316 TWh | 6.4% |
1995 | 6,590 TWh | 6.5% |
1996 | 6,829 TWh | 6.6% |
1997 | 6,782 TWh | 6.5% |
1998 | 6,899 TWh | 6.5% |
1999 | 7,162 TWh | 6.7% |
2000 | 7,323 TWh | 6.6% |
2001 | 7,481 TWh | 6.7% |
2002 | 7,552 TWh | 6.6% |
2003 | 7,351 TWh | 6.2% |
2004 | 7,636 TWh | 6.2% |
2005 | 7,608 TWh | 6% |
2006 | 7,654 TWh | 5.8% |
2007 | 7,452 TWh | 5.5% |
2008 | 7,382 TWh | 5.4% |
2009 | 7,233 TWh | 5.4% |
2010 | 7,374 TWh | 5.2% |
2011 | 7,022 TWh | 4.9% |
2012 | 6,501 TWh | 4.4% |
2013 | 6,513 TWh | 4.4% |
2014 | 6,607 TWh | 4.4% |
2015 | 6,656 TWh | 4.4% |
2016 | 6,715 TWh | 4.3% |
2017 | 6,735 TWh | 4.3% |
2018 | 6,856 TWh | 4.2% |
2019 | 7,073 TWh | 4.3% |
2020 | 6,789 TWh | 4.3% |
2021 | 7,031 TWh | 4.3% |
More recently, a return to nuclear energy has gained some support as countries push for transitions to cleaner energy, since nuclear power generates no direct carbon emissions.
What’s Next for Nuclear Energy?
Nuclear remains one of the least harmful sources of energy, and some countries are pursuing advancements in nuclear tech to fight climate change.
Small, modular nuclear reactors are one of the current proposed solutions to both bring down costs and reduce construction time of nuclear power plants. The benefits include smaller capital investments and location flexibility by trading off energy generation capacity.
With countries having to deal with aging nuclear reactors and climate change at the same time, replacements need to be considered. Will they come in the form of new nuclear power and uranium mining, or alternative sources of energy?
-
Travel4 weeks ago
Visualized: The World’s Busiest Airports, by Passenger Count
-
Visual Capitalist2 weeks ago
Join Us For Data Creator Con 2023
-
AI4 weeks ago
Visualizing Global Attitudes Towards AI
-
Economy2 weeks ago
Charted: Public Trust in the Federal Reserve
-
Visual Capitalist4 weeks ago
Calling All Data Storytellers to Enter our Creator Program Challenge
-
Technology1 week ago
Ranked: The World’s Top 25 Websites in 2023
-
Misc3 weeks ago
Ranked: Top 10 Cities Where International Travelers Spend the Most
-
Technology1 week ago
Visualizing the Top U.S. States for AI Jobs