Infographic: The Story of Voisey's Bay: The Discovery (1 of 3)
Connect with us

Mining

The Story of Voisey’s Bay: The Discovery (1 of 3)

Published

on

Part 1: The DiscoveryPart 2: The AuctionPart 3: Voisey's Today

The Story of Voisey's Bay: The Discovery (Part 1 of 3)
Part 1: The DiscoveryPart 2: The AuctionPart 3: Voisey's Today

The Story of Voisey’s Bay: The Discovery (Part 1 of 3)

Presented by: Equitas Resources, “Nickel exploration in Labrador”

Preface

The legendary story of one of Canada’s most significant base metal discoveries happened just before the dawn of the internet era. While some investors recall the sequence of events and the value that was created by Diamond Fields, there are many investors today, both new and old, who are not familiar with the story of Voisey’s Bay.

For this infographic, we have turned to Jacquie McNish’s fabulous book The Big Score, which documents the history of the discovery, biographical elements of Robert Friedland’s life, and the ensuing bidding war between Inco and Falconbridge that led to one of the most spectacular takeovers in mining history. If you like these infographics, then look into buying Jacquie’s book. It was gripping and full of information.

The Origins

By its very definition, a discovery is the breakthrough action of finding something of value that no one knew existed. Discoveries come in all shapes and sizes – but it turns out many of the very best discoveries happen in the most unsuspecting of conditions.

Labrador is located on the Northeast tip of Quebec in Canada, and it’s in this remote area that the Voisey’s Bay discovery takes place. Labrador is bigger than Great Britain and has over 8,000km of coastline, yet only a population of just 26,700. For context, caribou outnumber people in Labrador by a ratio of 13:1.

In 1985, geologists of the Newfoundland Department of Mines and Energy conducted a survey of one of the most remote parts of Labrador. Voisey’s Bay is 35km from Nain, a small town of 1,000 people.

The team, in a helicopter-supported survey, tested samples in the area, but were not encouraged by the low metal content of the weathered rocks exposed at surface. They left and didn’t look back.

In early 1993, Michael McMurrough of a fledgling company called Diamond Fields Resources was looking for untapped diamond properties to add to the company’s property portfolio. He had heard that a place called “Labrador” had ancient Archean rock formations – one of the earth’s oldest rock groups – where diamonds can form in kimberlite pipes. While Labrador’s wealth in iron ore is well-documented, no diamonds have ever been discovered in the region.

Diamond Fields’ geologist, Rod Baker, was sent to Newfoundland in April 1993 but found that the best diamond prospects had just been staked by two Newfoundlanders. Al Chislett and Chris Verbiski, and their prospecting outfit named Archean Resources, eventually convinced Diamond Fields to pay $372,000 in annual instalments over four years to acquire their claims. Diamond Fields also agreed to pay $500,000 to start an exploration program.

The two prospectors sampled throughout the summer of 1993 without much luck, but they did chip some samples of chalcopyrite, a copper-bearing mineral, from an outcrop. The samples came back with 2% copper, and they pushed for Diamond Fields to put more money into the exploration program.

Diamond Fields

At this time, Diamond Fields was a fledgling company. Running under Robert Friedland’s umbrella of Ivanhoe Capital, the company had its share of issues. Legal problems were mounting, and the company had finally just raised cash in a desperation move: the company impressed investors with its idea of “vacuuming” diamonds off the seafloor near Namibia.

It was company geologist Richard Garnett that convinced the board of Diamond Fields to pursue the Labrador findings, which he had been tracking. The company eventually was able to allocate $220,000 to Labrador – or 40% of what Chislett and Verbiski recommended for follow-up spending.

The Discovery

In August 1994, the prospectors received more detailed assays from the samples they collected – assays that confirmed a multi-element deposit with cobaltite, copper, magnetite, and exceptionally high amounts of nickel. In fall, the team tried to beat winter by executing the next phase of exploration.

On drill hole number two: they hit. The drill core was yellow – not from gold, but from high-grade massive sulphides. The hole was 33 metres long, and signified that Diamond Fields was finally onto something.

At this point, Robert Friedland reigned in control of the company with one mission: to auction off the discovery for the highest price.

View Part 2: The Auction

Click for Comments

Mining

Rare Earth Elements: Where in the World Are They?

Rare earth elements are the critical ingredients for a greener economy, making their reserves increasingly valuable to global supply chains.

Published

on

Rare Earths Elements: Where in the World Are They?

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Rare earth elements are a group of metals that are critical ingredients for a greener economy, and the location of the reserves for mining are increasingly important and valuable.

This infographic features data from the United States Geological Society (USGS) which reveals the countries with the largest known reserves of rare earth elements (REEs).

What are Rare Earth Metals?

REEs, also called rare earth metals or rare earth oxides, or lanthanides, are a set of 17 silvery-white soft heavy metals.

The 17 rare earth elements are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium (Sc), and yttrium (Y).

Scandium and yttrium are not part of the lanthanide family, but end users include them because they occur in the same mineral deposits as the lanthanides and have similar chemical properties.

The term “rare earth” is a misnomer as rare earth metals are actually abundant in the Earthโ€™s crust. However, they are rarely found in large, concentrated deposits on their own, but rather among other elements instead.

Rare Earth Elements, How Do They Work?

Most rare earth elements find their uses as catalysts and magnets in traditional and low-carbon technologies. Other important uses of rare earth elements are in the production of special metal alloys, glass, and high-performance electronics.

Alloys of neodymium (Nd) and samarium (Sm) can be used to create strong magnets that withstand high temperatures, making them ideal for a wide variety of mission critical electronics and defense applications.

End-use% of 2019 Rare Earth Demand
Permanent Magnets38%
Catalysts23%
Glass Polishing Powder and Additives13%
Metallurgy and Alloys8%
Battery Alloys9%
Ceramics, Pigments and Glazes5%
Phosphors3%
Other4%
Source

The strongest known magnet is an alloy of neodymium with iron and boron. Adding other REEs such as dysprosium and praseodymium can change the performance and properties of magnets.

Hybrid and electric vehicle engines, generators in wind turbines, hard disks, portable electronics and cell phones require these magnets and elements. This role in technology makes their mining and refinement a point of concern for many nations.

For example, one megawatt of wind energy capacity requires 171 kg of rare earths, a single U.S. F-35 fighter jet requires about 427 kg of rare earths, and a Virginia-class nuclear submarine uses nearly 4.2 tonnes.

Global Reserves of Rare Earth Minerals

China tops the list for mine production and reserves of rare earth elements, with 44 million tons in reserves and 140,000 tons of annual mine production.

While Vietnam and Brazil have the second and third most reserves of rare earth metals with 22 million tons in reserves and 21 million tons, respectively, their mine production is among the lowest of all the countries at only 1,000 tons per year each.

CountryMine Production 2020Reserves% of Total Reserves
China140,00044,000,00038.0%
Vietnam1,00022,000,00019.0%
Brazil1,00021,000,00018.1%
Russia2,70012,000,00010.4%
India3,0006,900,0006.0%
Australia17,0004,100,0003.5%
United States38,0001,500,0001.3%
Greenland-1,500,0001.3%
Tanzania-890,0000.8%
Canada-830,0000.7%
South Africa-790,0000.7%
Other Countries100310,0000.3%
Burma30,000N/AN/A
Madagascar8,000N/AN/A
Thailand2,000N/AN/A
Burundi500N/AN/A
World Total243,300115,820,000100%

While the United States has 1.5 million tons in reserves, it is largely dependent on imports from China for refined rare earths.

Ensuring a Global Supply

In the rare earth industry, Chinaโ€™s dominance has been no accident. Years of research and industrial policy helped the nation develop a superior position in the market, and now the country has the ability to control production and the global availability of these valuable metals.

This tight control of the supply of these important metals has the world searching for their own supplies. With the start of mining operations in other countries, China’s share of global production has fallen from 92% in 2010 to 58%< in 2020. However, China has a strong foothold in the supply chain and produced 85% of the world’s refined rare earths in 2020.

China awards production quotas to only six state-run companies:

  • China Minmetals Rare Earth Co
  • Chinalco Rare Earth & Metals Co
  • Guangdong Rising Nonferrous
  • China Northern Rare Earth Group
  • China Southern Rare Earth Group
  • Xiamen Tungsten

As the demand for REEs increases, the world will need tap these reserves. This graphic could provide clues as to the next source of rare earth elements.

Continue Reading

Energy

Mapped: Solar Power by Country in 2021

In 2020, solar power saw its largest-ever annual capacity expansion at 127 gigawatts. Here’s a snapshot of solar power capacity by country.

Published

on

Solar Power by Country

Mapped: Solar Power by Country in 2021

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The world is adopting renewable energy at an unprecedented pace, and solar power is the energy source leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Hereโ€™s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China ๐Ÿ‡จ๐Ÿ‡ณ 254,35514735.6%
U.S. ๐Ÿ‡บ๐Ÿ‡ธ 75,57223110.6%
Japan ๐Ÿ‡ฏ๐Ÿ‡ต 67,0004989.4%
Germany ๐Ÿ‡ฉ๐Ÿ‡ช 53,7835937.5%
India ๐Ÿ‡ฎ๐Ÿ‡ณ 39,211325.5%
Italy ๐Ÿ‡ฎ๐Ÿ‡น 21,6003453.0%
Australia ๐Ÿ‡ฆ๐Ÿ‡บ 17,6276372.5%
Vietnam ๐Ÿ‡ป๐Ÿ‡ณ 16,504602.3%
South Korea ๐Ÿ‡ฐ๐Ÿ‡ท 14,5752172.0%
Spain ๐Ÿ‡ช๐Ÿ‡ธ 14,0891862.0%
United Kingdom ๐Ÿ‡ฌ๐Ÿ‡ง 13,5632001.9%
France ๐Ÿ‡ซ๐Ÿ‡ท 11,7331481.6%
Netherlands ๐Ÿ‡ณ๐Ÿ‡ฑ 10,2133961.4%
Brazil ๐Ÿ‡ง๐Ÿ‡ท 7,881221.1%
Turkey ๐Ÿ‡น๐Ÿ‡ท 6,668730.9%
South Africa ๐Ÿ‡ฟ๐Ÿ‡ฆ 5,990440.8%
Taiwan ๐Ÿ‡น๐Ÿ‡ผ 5,8171720.8%
Belgium ๐Ÿ‡ง๐Ÿ‡ช 5,6463940.8%
Mexico ๐Ÿ‡ฒ๐Ÿ‡ฝ 5,644350.8%
Ukraine ๐Ÿ‡บ๐Ÿ‡ฆ 5,3601140.8%
Poland ๐Ÿ‡ต๐Ÿ‡ฑ 3,936340.6%
Canada ๐Ÿ‡จ๐Ÿ‡ฆ 3,325880.5%
Greece ๐Ÿ‡ฌ๐Ÿ‡ท 3,2472580.5%
Chile ๐Ÿ‡จ๐Ÿ‡ฑ 3,2051420.4%
Switzerland ๐Ÿ‡จ๐Ÿ‡ญ 3,1182950.4%
Thailand ๐Ÿ‡น๐Ÿ‡ญ 2,988430.4%
United Arab Emirates ๐Ÿ‡ฆ๐Ÿ‡ช 2,5391850.4%
Austria ๐Ÿ‡ฆ๐Ÿ‡น 2,2201780.3%
Czech Republic ๐Ÿ‡จ๐Ÿ‡ฟ 2,0731940.3%
Hungary ๐Ÿ‡ญ๐Ÿ‡บ 1,9531310.3%
Egypt ๐Ÿ‡ช๐Ÿ‡ฌ 1,694170.2%
Malaysia ๐Ÿ‡ฒ๐Ÿ‡พ 1,493280.2%
Israel ๐Ÿ‡ฎ๐Ÿ‡ฑ 1,4391340.2%
Russia ๐Ÿ‡ท๐Ÿ‡บ 1,42870.2%
Sweden ๐Ÿ‡ธ๐Ÿ‡ช 1,417630.2%
Romania ๐Ÿ‡ท๐Ÿ‡ด 1,387710.2%
Jordan ๐Ÿ‡ฏ๐Ÿ‡ด 1,3591000.2%
Denmark ๐Ÿ‡ฉ๐Ÿ‡ฐ 1,3001860.2%
Bulgaria ๐Ÿ‡ง๐Ÿ‡ฌ 1,0731520.2%
Philippines ๐Ÿ‡ต๐Ÿ‡ญ 1,04890.1%
Portugal ๐Ÿ‡ต๐Ÿ‡น 1,025810.1%
Argentina ๐Ÿ‡ฆ๐Ÿ‡ท 764170.1%
Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ 73760.1%
Morocco ๐Ÿ‡ฒ๐Ÿ‡ฆ 73460.1%
Slovakia ๐Ÿ‡ธ๐Ÿ‡ฐ 593870.1%
Honduras ๐Ÿ‡ญ๐Ÿ‡ณ 514530.1%
Algeria ๐Ÿ‡ฉ๐Ÿ‡ฟ 448100.1%
El Salvador ๐Ÿ‡ธ๐Ÿ‡ป 429660.1%
Iran ๐Ÿ‡ฎ๐Ÿ‡ท 41450.1%
Saudi Arabia ๐Ÿ‡ธ๐Ÿ‡ฆ 409120.1%
Finland ๐Ÿ‡ซ๐Ÿ‡ฎ 391390.1%
Dominican Republic ๐Ÿ‡ฉ๐Ÿ‡ด 370340.1%
Peru ๐Ÿ‡ต๐Ÿ‡ช 331100.05%
Singapore ๐Ÿ‡ธ๐Ÿ‡ฌ 329450.05%
Bangladesh ๐Ÿ‡ง๐Ÿ‡ฉ 30120.04%
Slovenia ๐Ÿ‡ธ๐Ÿ‡ฎ 2671280.04%
Uruguay ๐Ÿ‡บ๐Ÿ‡พ 256740.04%
Yemen ๐Ÿ‡พ๐Ÿ‡ช 25380.04%
Iraq ๐Ÿ‡ฎ๐Ÿ‡ถ 21650.03%
Cambodia ๐Ÿ‡ฐ๐Ÿ‡ญ 208120.03%
Cyprus ๐Ÿ‡จ๐Ÿ‡พ 2001470.03%
Panama ๐Ÿ‡ต๐Ÿ‡ฆ 198460.03%
Luxembourg ๐Ÿ‡ฑ๐Ÿ‡บ 1952440.03%
Malta ๐Ÿ‡ฒ๐Ÿ‡น 1843120.03%
Indonesia ๐Ÿ‡ฎ๐Ÿ‡ฉ 17210.02%
Cuba ๐Ÿ‡จ๐Ÿ‡บ 163140.02%
Belarus ๐Ÿ‡ง๐Ÿ‡พ 159170.02%
Senegal ๐Ÿ‡ธ๐Ÿ‡ณ 15580.02%
Norway ๐Ÿ‡ณ๐Ÿ‡ด 152170.02%
Lithuania ๐Ÿ‡ฑ๐Ÿ‡น 148370.02%
Namibia ๐Ÿ‡ณ๐Ÿ‡ฆ 145550.02%
New Zealand ๐Ÿ‡ณ๐Ÿ‡ฟ 142290.02%
Estonia ๐Ÿ‡ช๐Ÿ‡ช 130980.02%
Bolivia ๐Ÿ‡ง๐Ÿ‡ด 120100.02%
Oman ๐Ÿ‡ด๐Ÿ‡ฒ 109210.02%
Colombia ๐Ÿ‡จ๐Ÿ‡ด 10720.01%
Kenya ๐Ÿ‡ฐ๐Ÿ‡ช 10620.01%
Guatemala ๐Ÿ‡ฌ๐Ÿ‡น10160.01%
Croatia ๐Ÿ‡ญ๐Ÿ‡ท 85170.01%
World total ๐ŸŒŽ 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the worldโ€™s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of Chinaโ€™s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the worldโ€™s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the worldโ€™s PV panels.

With that said, itโ€™s no surprise that 5 of the worldโ€™s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

Whatโ€™s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solarโ€™s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and itโ€™s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Continue Reading

Subscribe

Popular