The Genomic Revolution: Why Investors Are Paying Attention
Connect with us

Sponsored

The Genomic Revolution: Why Investors Are Paying Attention

Published

on

The following content is sponsored by MSCI.

The Genomic Revolution: Why Investors Are Paying Attention

At the center of the genomic revolution is big data and DNA.

The implications are vast. With recent advancements, faster cancer detection is within reach, potentially saving thousands of lives each year. An initial research study shows this technology could save 66,000 live annually in the U.S. alone.

What’s more, genomic innovation goes beyond just cancer detection. Today it spans a variety of innovations, from gene editing to anti-cancer drugs.

In this graphic from MSCI, we look at four reasons why the genomics sector is positioned for growth thanks to powerful applications in medicine.

What is the Genomic Revolution?

To start, the genomic revolution focuses on the study of the human genome, a human (or organism’s) complete set of DNA.

A human consists of 23 pairs of chromosomes and 24,000 genes. Taken together, the human genetic code equals three billion DNA letters. Since most ailments have a link to our genetic condition, genomics involves the editing, mapping, and function of a genome.

With genomic innovation, large-scale applications of diagnostics and decision-making tools are made possible for a wide range of diseases.

4 Ways the Genomic Revolution is Changing Medicine

Over the last century, the field of genomics has advanced faster than any other life sciences discipline.

The hallmark achievement is the Human Genome Project completed in 2001. Since then, scientists have analyzed thousands of people’s genes to identify the cause of heart disease, cancer, and other fatal afflictions.

Here are four areas where genomic innovation is making a big difference in the medical field.

1. Gene Editing

Gene editing enables scientists to alter someone’s DNA, such as eye color. Broadly speaking, gene editing involves cutting DNA at a certain point and adding to, removing, or replacing this DNA.

For instance, gene editing enables living drugs. As the name suggests, living drugs are made from living organisms that harness a body’s immune system or other bodily process, and uses them to fight disease.

Based on analysis from ARK Invest, living drugs have a potential $200 billion addressable market.

2. Cancer Detection

Multi-cancer screening, supported by genomic sequencing and liquid biopsies, is projected to prevent more deaths from cancer than any other medical innovation.

Through a single blood test, multiple types of cancer can be detected early through synthetic biology advancements. Scientists use genomic sequencing (also referred to as DNA sequencing) to identify the genetic makeup of an organism, or a change in a gene which may lead to cancer.

Critically, screening costs are dropping rapidly, from $30,000 in 2015 to $1,500 in 2021. The combination of these factors is spurring a potential $150 billion market. This could be revolutionary for healthcare by shifting from a treatment-based model to a more preventative one in the future.

3. DNA Sequencing

One modern form of DNA sequencing is long-read DNA sequencing. With long-read DNA sequencing, scientists can identify genetic sequences faster and more affordably.

For these reasons, long-read DNA sequencing is projected to grow to a $5 billion market, growing at a 82% annual rate.

4. Agricultural Biology

Finally, the genomic revolution is making strides in agricultural biology. Here, research is looking at how to reduce the cost of producing crops, improving plant breeding, and enhancing quality.

One study shows that genomic advances in agriculture have led to six-fold increases in income for some farmers.

Investing in the Genomic Revolution

A number of genomic-focused companies have shown promising returns.

This can be illustrated by the MSCI ACWI Genomic Innovation Index, which has outperformed the benchmark by nearly 50% since 2013. The index, which was developed with ARK Invest, comprises roughly 250 companies who are working in the field of genomic innovation. In 2020 alone, the index returned over 43%.

From diagnostics to prevention, the genomic revolution is breaking ground in scalable solutions for global health. Investment opportunities are expected to follow.

Click for Comments

Sponsored

The Road to Decarbonization: How Asphalt is Affecting the Planet

The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills.

Published

on

Road to Decarbonization - How Asphalt is Affecting the Planet

The Road to Decarbonization: How Asphalt is Affecting the Planet

Asphalt, also known as bitumen, has various applications in the modern economy, with annual demand reaching 110 million tons globally.

Until the 20th century, natural asphalt made from decomposed plants accounted for the majority of asphalt production. Today, most asphalt is refined from crude oil.

This graphic, sponsored by Northstar Clean Technologies, shows how new technologies to reuse and recycle asphalt can help protect the environment.

The Impact of Climate Change

Pollution from vehicles is expected to decline as electric vehicles replace internal combustion engines.

But pollution from asphalt could actually increase in the next decades because of rising temperatures in some parts of the Earth. When subjected to extreme temperatures, asphalt releases harmful greenhouse gases (GHG) into the atmosphere.

Emissions from Road Construction (Source) CO2 equivalent (%)
Asphalt 28%
Concrete18%
Excavators and Haulers16%
Trucks13%
Crushing Plant 10%
Galvanized Steel 6%
Reinforced Steel6%
Plastic Piping 2%
Geotextile1%

Asphalt paved surfaces and roofs make up approximately 45% and 20% of surfaces in U.S. cities, respectively. Furthermore, 75% of single-family detached homes in Canada and the U.S. have asphalt shingles on their roofs.

Reducing the Environmental Impact of Asphalt

Similar to roads, asphalt shingles have oil as the primary component, which is especially harmful to the environment.

Shingles do not decompose or biodegrade. The U.S. alone generates ∼12 million tons of asphalt shingles tear-off waste and installation scrap every year and more than 90% of it is dumped into landfills, the equivalent of 20 million barrels of oil.

But most of it can be reused, rather than taking up valuable landfill space.

Using technology, the primary components in shingles can be repurposed into liquid asphalt, aggregate, and fiber, for use in road construction, embankments, and new shingles.

Providing the construction industry with clean, sustainable processing solutions is also a big business opportunity. Canada alone is a $1.3 billion market for recovering and reprocessing shingles.

Northstar Clean Technologies is the only public company that repurposes 99% of asphalt shingles components that otherwise go to landfills.

Continue Reading

Sponsored

A Visual Guide to the Science Behind Cultured Meat

Cultured meat could become a $25 billion market by 2030, but investment into the technologies that underpin the industry is required.

Published

on

A Visual Guide to the Science Behind Cultured Meat

Cultured foods—also known as cell-based foods—are expected to turn our global food system as we know it on its head.

In fact, the cultured meat market is estimated to reach an eye-watering $25 billion by 2030 according to McKinsey, but only if it can overcome hurdles such as price parity and consumer acceptance. To do so, significant innovation in the science behind these products will be crucial for the industry’s growth.

In the graphic above from our sponsor CULT Food Science, we provide a visual overview of some of the technologies behind the creation of cultured meat products.

What is Cultured Meat?

To start, cultured meat is defined as a genuine animal meat product that is created by cultivating animal cells in a controlled lab environment—eliminating the need to farm animals for food almost entirely.

“Cultured meat has all the same fat, muscles, and tendons as any animal…All this can be done with little or no greenhouse gas emissions, aside from the electricity you need to power the land where the process is done.”
—Bill Gates

Because cultured meat is made of the same cell types and structure found in animal tissue, the sensory and nutritional profiles are like-for-like. Let’s dive into how these products are made.

The Science and Technology Behind Cultured Meat

The main challenge facing the cultured meat market is producing products at scale. But thanks to the vast amount of research in the stem cell biology space, the science behind cultured foods is not entirely new.

Given that we are in the very early days of applying these learnings to producing food products, those looking to invest in companies contributing to the industry’s growth stand to benefit. Here is an overview of some of the technologies that underpin the industry that you should know:

1. Bioprocess Design

This is the process of using living cells and their components to create new products. According to experts like the Good Food Institute, bioprocess design holds the key to unlocking cultured meat production at scale.

Specifically, innovation in bioreactor (where the cells grow) design represents a massive opportunity for companies and investors alike.

2. Tissue Engineering

Tissue engineering techniques are used to produce cultured meat that resembles real meat textures and flavors. The first step is taking tissue from the animal for the purpose of extracting stem cells and creating cell lines.

The extracted stem cell lines are then cultivated in a nutrient rich environment, mimicking in-animal tissue growth and producing muscle fibers inside a bioreactor. The muscle fibers are processed and mixed with additional fats and ingredients to assemble the finished meat product.

3. Cell Lines

Cell lines refer to the different types of cells that can be propagated repeatedly and sometimes indefinitely.

Access to cell lines is a major challenge facing the industry today and is an area that requires significantly more research. This is because there is not just one cell type that can be used in cellular agriculture to produce cultured food products.

4. Cell Culture Media

Cells (or cell cultures) require very specific environmental conditions. Cell culture media is a gel or liquid that contains the nutrients needed to support growth outside of the body.

More research in this space is needed to determine optimized formulations and make these products more affordable.

5. Scaffolding

Scaffolds are 3D cell culture platforms that mimic the structure of complex biological tissues, such as skeletal muscle. This platforms can be created through the use of 3D Bioprinting.

Scaffolds are predominantly made up of collagen and gelatin. The problem is these are both animal-derived ingredients which defeats the purpose of cell-based products. Therefore, more sustainable plant-derived options are also being explored.

Investing in the Future of Cultured Meat

CULT Food Science is an innovative investment platform advancing the technology behind the future of food with an exclusive focus on cultured meat, cultured dairy, and cell-based foods.

The company’s global portfolio spans four continents and includes exposure to a diverse pipeline:

  • Cell lines
  • End products
  • Scaffolding technology
  • Growth medium
  • Intellectual property

>>>Want to stay updated? Click here to subscribe to the CULT Food Science mailing list.

Continue Reading

Subscribe

Popular