Mapped: EV Battery Manufacturing Capacity, by Region
Connect with us

Sponsored

Mapped: EV Battery Manufacturing Capacity, by Region

Published

on

The following content is sponsored by Scotch Creek Ventures.

Mapped: EV Battery Manufacturing Capacity, by Region

The demand for lithium-ion batteries for electric vehicles (EVs) is rising rapidly—it’s set to reach 9,300 gigawatt-hours (GWh) by 2030—up by over 1,600% from 2020 levels.

For that reason, developing domestic battery supply chains, including battery manufacturing capacity, is becoming increasingly important as countries strive to shift away from gasoline vehicles to EVs.

Which countries are leading the race for batteries? The above infographic from Scotch Creek Ventures highlights the top 10 nations for EV battery manufacturing.

The Top 10 Countries by Capacity

The biggest battery manufacturers are located in regions that have high demand for EVs, and that have wide access to raw materials:

RankCountry2021 Li-ion manufacturing capacity (GWh)% of World Total
#1China 🇨🇳55879.0%
#2U.S. 🇺🇸446.2%
#3Hungary 🇭🇺284.0%
#4Poland 🇵🇱223.1%
#5South Korea 🇰🇷182.5%
#6Japan 🇯🇵172.4%
#7Germany 🇩🇪111.6%
#8Sweden 🇸🇪40.6%
#9UK 🇬🇧20.3%
#10Australia 🇦🇺10.1%
N/ARest of the World 🌍10.1%
N/ATotal706100.0%

Data as of February 1, 2021.
Source: S&P Global Market Intelligence

China is by far the leader in the battery race with nearly 80% of global Li-ion manufacturing capacity. The country also dominates other parts of the battery supply chain, including the mining and refining of battery minerals like lithium and graphite.

The U.S. is following China from afar, with around 6% or 44 GWh of global manufacturing capacity. Tesla and Panasonic’s Giga Nevada accounts for the majority of it with 37 GWh of annual capacity, making it the world’s largest battery manufacturing plant.

European countries collectively make up for 68 GWh or around 10% of global battery manufacturing. Moreover, Hungary and Poland also make the top five, hosting plants owned by large battery manufacturers like SK Innovation and LG Chem.

The Future of EV Battery Manufacturing

According to S&P Global Market Intelligence, global lithium-ion manufacturing capacity is expected to more than double by 2025.

Here’s how the top 10 countries could stack up in 2025:

RankCountry2025P Li-ion manufacturing capacity (GWh)% of World Total
#1China 🇨🇳94465.2%
#2Germany 🇩🇪16411.3%
#3U.S. 🇺🇸916.3%
#4Poland 🇵🇱704.8%
#5Hungary 🇭🇺473.2%
#6Sweden 🇸🇪322.2%
#7France 🇫🇷322.2%
#8South Korea 🇰🇷181.2%
#9Japan 🇯🇵171.2%
#10UK 🇬🇧120.8%
N/ARest of the World 🌍201.4%
N/ATotal1,447100.0%

Although China is expected to come out on top again, its share of worldwide capacity could fall to around 65% as other countries ramp up battery production. For instance, Germany’s capacity is projected to rise to 164 GWh, representing a 15-fold increase in just four years.

Furthermore, the U.S. is expected to more than double its capacity by 2025. In fact, 13 new plants are expected to be operational in the next five years, providing a boost to domestic EV battery manufacturing capabilities.

It’s important to note that the battery industry is evolving rapidly, and these rankings could change as manufacturers set up shop in different countries. However, it’s clear that both battery demand and manufacturing capacity are set to grow. And more batteries require more raw materials—especially critical metals like lithium.

Global lithium demand from battery factories could hit 3 million tonnes by 2030, requiring a massive increase over the 82,000 tonnes produced in 2020. As countries like the U.S. ramp up battery manufacturing, new sources of lithium could prove increasingly valuable in building sustainable battery supply chains.

Scotch Creek Ventures is developing two lithium mining projects in Clayton Valley, Nevada, to supply lithium for the green future.

Support the Future of Data Storytelling

Sorry to interrupt your reading, but we have a favor to ask. At Visual Capitalist we believe in a world where data can be understood by everyone. That’s why we want to build the VC App - the first app of its kind combining verifiable and transparent data with beautiful, memorable visuals. All available for free.

As a small, independent media company we don’t have the expertise in-house or the funds to build an app like this. So we’re asking our community to help us raise funds on Kickstarter.

If you believe in data-driven storytelling, join the movement and back us on Kickstarter!

Thank you.

Support the future of data storytelling, back us on Kickstarter
Click for Comments

Sponsored

ESG Data: The Four Motivations Driving Usage

ESG controversies can damage a company’s value, but ESG data may be able to help manage this risk. What are other reasons for using ESG data?

Published

on

ESG Data: The Four Motivations Driving Usage

Data is key to the environmental, social, and governance (ESG) revolution. Access to granular ESG data can help boost transparency for market participants. Unfortunately, 63% of U.S. and European asset managers say a lack of quantitative data inhibits their ESG implementation.

Being clear on the potential application of this data is equally important.

  • Investors and banks can use ESG data for risk assessment, to spot opportunities, and to push companies for change.
  • Companies can publish their own ESG data, quantify progress on their ESG goals, and use data to inform decisions.
  • Policymakers can use ESG data to inform regulatory frameworks and measure policy effectiveness.

This graphic from ICE, the second in a three part series on the ESG toolkit, explores four primary motivations of ESG data users.

1. Right Thing

The objective: Having a positive social or environmental impact.

For investors, this can involve screening out companies that conflict with their values and selecting companies that align with their ESG objectives.

As another example, it can involve comparing the social impact of municipal bonds. One way investors can measure social impact is through scores that quantify the potential socioeconomic need of an area, using metrics like poverty and education levels. Here are the social impact scores for three actual municipal bonds issued in Florida.

StateBond IssuerSocial Impact Score
(Higher = larger potential impact)
FloridaIssuer #176.5
FloridaIssuer #266.6
FloridaIssuer #343.2

Issuer #1’s bond is projected to have a community impact that is nearly twice as high/positive as Issuer #3’s bond.

For companies, doing the right thing can include assessing their progress on ESG goals and benchmarking themselves to peers. For example, gender and racial representation is a growing area of focus.

2. Risk

The objective: Managing ESG risks, such as climate and reputational risks.

For investors, this can involve back-testing or analysis around specific risk events before they materialize. Here are the risk profiles of two actual municipal bonds in California. The shown bonds are practically identical in many ways, except their wildlife score.

 Issuer #1Issuer #2
Current Coupon Rate5.0%5.0%
Maturity DateAug 01, 2048August 01, 2048
S&P RatingAAAA
Price to Date (Call Date)Aug 01, 2027Aug 01, 2027
Price122.0122.0
Yield1.0%1.0%
Wildfire Score (Higher = more risk)3.62.7

Managing ESG risk can also involve analyzing a company’s policies and governance for weaknesses. This is important as an ESG controversy can have long-lasting effects on the valuation of a company.

In one study, companies with ESG controversies dropped more than 10% in value relative to the S&P 500. They hadn’t fully recovered a year after the incident.

3. Revenue

The objective: Targeting outperformance through ESG analysis.

Selecting companies with strong ESG data can align with long-term growth trends and may help boost performance. For heavy emitting industries, research indicates that European companies with lower emissions trade at much higher valuations. The chart below shows companies’ price-to-book ratio relative to the Stoxx 600* sector median.

 UtilitiesEnergyMaterials
Above Median Emission Intensity (Bad)1.91.12.0
Below Median Emissions Intensity (Good)2.71.92.1

*The Stoxx 600 Index represents large, mid and small capitalization companies across 17 countries of the European region: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Energy companies with low emissions trade at a valuation nearly two times higher than energy companies with high emissions.

4. Regulation

The objective: Understanding and complying with relevant ESG regulation.

The International Sustainability Standards Board has announced a global reporting proposal aligned with the Task Force on Climate-related Financial Disclosures (TCFD). In addition, a growing number of jurisdictions will require organizational reporting that aligns with the TCFD.

  • Brazil
  • European Union
  • Hong Kong
  • Japan
  • New Zealand
  • Singapore
  • Switzerland
  • UK

Not only that, a European Union regulation known as Sustainable Finance Disclosure Regulation (SFDR) came into effect in 2021. It seeks greater transparency in disclosures from firms marketing investment products. Even firms located outside the EU could be impacted if they serve EU customers. In total, the market cap of these non-EU companies exposed to SFDR amounts to $3.2 trillion.

Matching ESG Data with Motivation

There will be growing demand for transparent data as ESG investing flourishes. To remain competitive, investors, policymakers, and companies need access to ESG data that meets their unique objectives.

In Part 3 of the ESG Toolkit series sponsored by ICE, we’ll look at key sustainability index types.

Continue Reading

Sponsored

The Hierarchy of Zero Waste

In a world that generates 2 billion tonnes of waste every year, waste management has become a global concern. Here are some strategies to help guide zero waste policies.

Published

on

How-to-achieve-zero-waste

The Hierarchy of Zero Waste

Many cities have set ambitious zero waste targets in the upcoming decades.

The idea is to have communities where waste generation is avoided, and products are shared, reused, or refurbished.

This graphic, sponsored by Northstar Clean Technologies, shows the main strategies and hierarchy to guide zero waste policies.

What is Zero Waste?

In a world that generates approximately 2 billion tons of waste every year, waste management has become a global concern. Thus, countries and cities are increasing efforts to reduce or even eliminate waste when possible.

The Zero Waste International Alliance defines zero waste as “the conservation of all resources  by means of responsible production, consumption, reuse, and recovery of products, packaging, and materials without burning and with no discharges to land, water, or air that threaten the environment or human health.”

Becoming a zero waste community, however, is a complex task.

Currently, Sweden recycles 99% of locally-produced waste and is considered the best country in the world when it comes to recycling and reusing waste. However, such results only came after almost 40 years of recycling and reuse policies.

In line with this, here are seven commonly accepted steps you can use to achieve zero waste:

1. Rethink, Redesign Products

The global population consumes 110 billion tons of materials each year, but only 8.6% is reused or recycled. In a zero waste society, single-use products are avoided and products are designed with sustainable practices and materials.

2. Reduce

Consumption must be planned carefully to reduce the unnecessary use of materials. Consumers must choose products that maximize the usable lifespan and opportunities for continuous reuse. Companies must minimize the quantity and toxicity of materials used.

3. Reuse

The value of products is maintained by reusing, repairing, or refurbishing for alternative uses.

4. Recycle

Products are diverted from waste streams and recirculated into use. Resilient local markets are developed, allowing the highest and best use of materials.

5. Material Recovery

Component materials like cement, metals, or asphalt are recovered from mixed waste and collected for other applications.

In the U.S. alone, around 12 million tons of asphalt shingle tear-off waste and installation scrap are generated from roof installation each year. Currently, more than 90% of this is discarded in landfills. This material can be repurposed to create new products like liquid asphalt, fiber, and aggregate.

6. Residuals Management

Waste is biologically stabilized and sent to responsibly managed landfills.

7. Unacceptable

The production of materials that are not recoverable and can negatively impact the environment must be avoided.

Reducing our Climate Impact

Reducing, recycling, and recovering materials can be a key part of a climate change strategy to reduce our greenhouse gas emissions.

According to the U.S. Environmental Protection Agency, about 42% of all greenhouse gas emissions are caused by the production and use of goods, including food, products, and packaging.

Even though 100% zero waste may sound difficult to achieve in the near future, a zero waste approach is essential to reduce our impact on the environment.

Northstar Clean Technologies aims to become the leading recovery and reprocessing company for asphalt shingles in North America.

Continue Reading

Subscribe

Popular