Connect with us

Uranium

The Science of Nuclear Weapons, Visualized

Published

on

this infographic visualizes the science of how nuclear weapons work, including the processes of fission and fusion

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

Visualized: How Nuclear Weapons Work

In 1945, the world’s first-ever nuclear weapon was detonated at the Trinity test site in New Mexico, United States, marking the beginning of the Atomic Age.

Since then, the global nuclear stockpile has multiplied, and when geopolitical tensions rise, the idea of a nuclear apocalypse understandably causes widespread concern.

But despite their catastrophically large effects, the science of how nuclear weapons work is atomically small.

The Atomic Science of Nuclear Weapons

All matter is composed of atoms, which host different combinations of three particles—protons, electrons, and neutrons. Nuclear weapons work by capitalizing on the interactions of protons and neutrons to create an explosive chain reaction.

At the center of every atom is a core called the nucleus, which is composed of closely-bound protons and neutrons. While the number of protons is unique to each element in the periodic table, the number of neutrons can vary. As a result, there are multiple “species” of some elements, known as isotopes.

For example, here are some isotopes of uranium:

  • Uranium-238: 92 protons, 146 neutrons
  • Uranium-235: 92 protons, 143 neutrons
  • Uranium-234: 92 protons, 142 neutrons

These isotopes can be stable or unstable. Stable isotopes have a relatively static or unchanging number of neutrons. But when a chemical element has too many neutrons, it becomes unstable or fissile.

When fissile isotopes attempt to become stable, they shed excess neutrons and energy. This energy is where nuclear weapons get their explosivity from.

There are two types of nuclear weapons:

  • Atomic Bombs: These rely on a domino effect of multiple fission reactions to produce an explosion, using either uranium or plutonium.
  • Hydrogen Bombs: These rely on a combination of fission and fusion using uranium or plutonium, with the help of lighter elements like the isotopes of hydrogen.

So, what exactly is the difference between fission and fusion reactions?

Splitting Atoms: Nuclear Fission

Nuclear fission—the process used by nuclear reactors—produces large amounts of energy by breaking apart a heavier unstable atom into two smaller atoms, starting a nuclear chain reaction.

When a neutron is fired into the nucleus of a fissile atom like uranium-235, the uranium atom splits into two smaller atoms known as “fissile fragments” in addition to more neutrons and energy. These excess neutrons can then start a self-sustaining chain reaction by hitting the nuclei of other uranium-235 atoms, resulting in an atomic explosion.

Atomic bombs use nuclear fission, though it’s important to note that a fission chain reaction requires a particular amount of a fissile material like uranium-235, known as the supercritical mass.

Merging Atoms: Nuclear Fusion

Hydrogen bombs use a combination of fission and fusion, with nuclear fusion amplifying a fission reaction to produce a much more powerful explosion than atomic bombs.

Fusion is essentially the opposite of fission—instead of splitting a heavier atom into smaller atoms, it works by putting together two atoms to form a third unstable atom. It’s also the same process that fuels the Sun.

Nuclear fusion mainly relies on isotopes of lighter elements, like the two isotopes of hydrogen—deuterium and tritium. When subjected to intense heat and pressure, these two atoms fuse together to form an extremely unstable helium isotope, which releases energy and neutrons.

The released neutrons then fuel the fission reactions of heavier atoms like uranium-235, creating an explosive chain reaction.

How Atomic and Hydrogen Bombs Compare

Just how powerful are hydrogen bombs, and how do they compare to atomic bombs?

BombTypeEnergy produced (kilotons of TNT)
Little Boy 🇺🇸 Atomic15kt
Fat Man 🇺🇸 Atomic21kt
Castle Bravo 🇺🇸 Hydrogen15,000kt
Tsar Bomba 🇷🇺Hydrogen51,000kt

The bombs Little Boy and Fat Man were used in the atomic bombings of Hiroshima and Nagasaki in 1945, bringing a destructive end to World War II. The scale of these bombings was, at the time, unparalleled. But comparing these to hydrogen bombs shows just how powerful nuclear weapons have become.

Castle Bravo was the codename for the United States’ largest-ever nuclear weapon test, a hydrogen bomb that produced a yield of 15,000 kilotons—making it 1,000 times more powerful than Little Boy. What’s more, radioactive traces from the explosion, which took place on the Marshall Islands near Fiji, were found in Australia, India, Japan, U.S., and Europe.

Seven years later, the Soviet Union tested Tsar Bomba in 1961, the world’s most powerful nuclear weapon. The explosion produced 51,000 kilotons of explosive energy, with a destructive radius of roughly 60km.

Given how damaging a single nuke can be, it’s difficult to imagine the outcome of an actual nuclear conflict without fear of total annihilation, especially with the world’s nuclear arsenal sitting at over 13,000 warheads.

Click for Comments

Uranium

Visualizing the Uranium Mining Industry in 3 Charts

These visuals highlight the uranium mining industry and its output, as well as the trajectory of nuclear energy from 1960 to today.

Published

on

When uranium was discovered in 1789 by Martin Heinrich Klaproth, it’s likely the German chemist didn’t know how important the element would become to human life.

Used minimally in glazing and ceramics, uranium was originally mined as a byproduct of producing radium until the late 1930s. However, the discovery of nuclear fission, and the potential promise of nuclear power, changed everything.

What’s the current state of the uranium mining industry? This series of charts from Truman Du highlights production and the use of uranium using 2021 data from the World Nuclear Association (WNA) and Our World in Data.

Who are the Biggest Uranium Miners in the World?

Most of the world’s biggest uranium suppliers are based in countries with the largest uranium deposits, like Australia, Kazakhstan, and Canada.

The largest of these companies is Kazatomprom, a Kazakhstani state-owned company that produced 25% of the world’s new uranium supply in 2021.

A donut chart showing the biggest uranium mining companies and the percentage they contribute to the world's supply of uranium.

As seen in the above chart, 94% of the roughly 48,000 tonnes of uranium mined globally in 2021 came from just 13 companies.

Rank Company2021 Uranium Production (tonnes)Percent of Total
1🇰🇿 Kazatomprom 11,85825%
2🇫🇷 Orano 4,5419%
3🇷🇺 Uranium One 4,5149%
4🇨🇦 Cameco 4,3979%
5🇨🇳 CGN 4,1129%
6🇺🇿 Navoi Mining3,5007%
7🇨🇳 CNNC 3,5627%
8🇷🇺 ARMZ 2,6355%
9🇦🇺 General Atomics/Quasar 2,2415%
10🇦🇺 BHP 1,9224%
11🇬🇧 Energy Asia 9002%
12🇳🇪 Sopamin 8092%
13🇺🇦 VostGok 4551%
14Other2,8866%
Total48,332100%

France’s Orano, another state-owned company, was the world’s second largest producer of uranium at 4,541 tonnes.

Companies rounding out the top five all had similar uranium production numbers to Orano, each contributing around 9% of the global total. Those include Uranium One from Russia, Cameco from Canada, and CGN in China.

Where are the Largest Uranium Mines Found?

The majority of uranium deposits around the world are found in 16 countries with Australia, Kazakhstan, and Canada accounting for for nearly 40% of recoverable uranium reserves.

But having large reserves doesn’t necessarily translate to uranium production numbers. For example, though Australia has the biggest single deposit of uranium (Olympic Dam) and the largest reserves overall, the country ranks fourth in uranium supplied, coming in at 9%.

Here are the top 10 uranium mines in the world, accounting for 53% of the world’s supply.

A map of the largest mines and countries that undertake uranium mining.

Of the largest mines in the world, four are found in Kazakhstan. Altogether, uranium mined in Kazakhstan accounted for 45% of the world’s uranium supply in 2021.

Uranium MineCountryMain Owner2021 Production
Cigar Lake🇨🇦 CanadaCameco/Orano4,693t
Inkai 1-3🇰🇿 KazakhstanKazaktomprom/Cameco3,449t
Husab🇳🇦 NamibiaSwakop Uranium (CGN)3,309t
Karatau (Budenovskoye 2)🇰🇿 KazakhstanUranium One/Kazatomprom2,561t
Rössing🇳🇦 NamibiaCNNC2,444t
Four Mile🇦🇺 AustraliaQuasar2,241t
SOMAIR🇳🇪 NigerOrano1,996t
Olympic Dam🇦🇺 AustraliaBHP Billiton1,922t
Central Mynkuduk🇰🇿 KazakhstanOrtalyk1,579t
Kharasan 1🇰🇿 KazakhstanKazatomprom/Uranium One1,579t

Namibia, which has two of the five largest uranium mines in operation, is the second largest supplier of uranium by country, at 12%, followed by Canada at 10%.

Interestingly, the owners of these mines are not necessarily local. For example, France’s Orano operates mines in Canada and Niger. Russia’s Uranium One operates mines in Kazakhstan, the U.S., and Tanzania. China’s CGN owns mines in Namibia.

And despite the African continent holding a sizable amount of uranium reserves, no African company placed in the top 10 biggest companies by production. Sopamin from Niger was the highest ranked at #12 with 809 tonnes mined.

Uranium Mining and Nuclear Energy

Uranium mining has changed drastically since the first few nuclear power plants came online in the 1950s.

For 30 years, uranium production grew steadily due to both increasing demand for nuclear energy and expanding nuclear arsenals, eventually peaking at 69,692 tonnes mined in 1980 at the height of the Cold War.

Nuclear energy production (measured in terawatt-hours) also rose consistently until the 21st century, peaking in 2001 when it contributed nearly 7% to the world’s energy supply. But in the years following, it started to drop and flatline.

A chart plotting the total nuclear energy produced since 1950 and the percentage it contributes to the world's energy supply.

By 2021, nuclear energy had fallen to 4.3% of global energy production. Several nuclear accidents—Chernobyl, Three Mile Island, and Fukushima—contributed to turning sentiment against nuclear energy.

YearNuclear Energy
Production
% of Total Energy
196572 TWh0.2%
196698 TWh0.2%
1967116 TWh0.2%
1968148 TWh0.3%
1969175 TWh0.3%
1970224 TWh0.4%
1971311 TWh0.5%
1972432 TWh0.7%
1973579 TWh0.9%
1974756 TWh1.1%
19751,049 TWh1.6%
19761,228 TWh1.7%
19771,528 TWh2.1%
19781,776 TWh2.3%
19791,847 TWh2.4%
19802,020 TWh2.6%
19812,386 TWh3.1%
19822,588 TWh3.4%
19832,933 TWh3.7%
19843,560 TWh4.3%
19854,225 TWh5%
19864,525 TWh5.3%
19874,922 TWh5.5%
19885,366 TWh5.8%
19895,519 TWh5.8%
19905,676 TWh5.9%
19915,948 TWh6.2%
19925,993 TWh6.2%
19936,199 TWh6.4%
19946,316 TWh6.4%
19956,590 TWh6.5%
19966,829 TWh6.6%
19976,782 TWh6.5%
19986,899 TWh6.5%
19997,162 TWh6.7%
20007,323 TWh6.6%
20017,481 TWh6.7%
20027,552 TWh6.6%
20037,351 TWh6.2%
20047,636 TWh6.2%
20057,608 TWh6%
20067,654 TWh5.8%
20077,452 TWh5.5%
20087,382 TWh5.4%
20097,233 TWh5.4%
20107,374 TWh5.2%
20117,022 TWh4.9%
20126,501 TWh4.4%
20136,513 TWh4.4%
20146,607 TWh4.4%
20156,656 TWh4.4%
20166,715 TWh4.3%
20176,735 TWh4.3%
20186,856 TWh4.2%
20197,073 TWh4.3%
20206,789 TWh4.3%
20217,031 TWh4.3%

More recently, a return to nuclear energy has gained some support as countries push for transitions to cleaner energy, since nuclear power generates no direct carbon emissions.

What’s Next for Nuclear Energy?

Nuclear remains one of the least harmful sources of energy, and some countries are pursuing advancements in nuclear tech to fight climate change.

Small, modular nuclear reactors are one of the current proposed solutions to both bring down costs and reduce construction time of nuclear power plants. The benefits include smaller capital investments and location flexibility by trading off energy generation capacity.

With countries having to deal with aging nuclear reactors and climate change at the same time, replacements need to be considered. Will they come in the form of new nuclear power and uranium mining, or alternative sources of energy?

Continue Reading

Subscribe

Popular