The Massive Impact of EVs on Commodities in One Chart
Connect with us

Technology

The Massive Impact of EVs on Commodities in One Chart

Published

on

The Massive Impact of EVs on Commodities in One Chart

The Massive Impact of EVs on Commodities

How demand would change in a 100% EV world

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

What would happen if you flipped a switch, and suddenly every new car that came off assembly lines was electric?

It’s obviously a thought experiment, since right now EVs have close to just 1% market share worldwide. We’re still years away from EVs even hitting double-digit demand on a global basis, and the entire supply chain is built around the internal combustion engine, anyways.

At the same time, however, the scenario is interesting to consider. One recent projection, for example, put EVs at a 16% penetration by 2030 and then 51% by 2040. This could be conservative depending on the changing regulatory environment for manufacturers – after all, big markets like China, France, and the U.K. have recently announced that they plan on banning gas-powered vehicles in the near future.

The Thought Experiment

We discovered this “100% EV world” thought experiment in a UBS report that everyone should read. As a part of their UBS Evidence Lab initiative, they tore down a Chevy Bolt to see exactly what is inside, and then had 39 of the bank’s analysts weigh in on the results.

After breaking down the metals and other materials used in the vehicle, they noticed a considerable amount of variance from what gets used in a standard gas-powered car. It wasn’t just the battery pack that made a difference – it was also the body and the permanent-magnet synchronous motor that had big implications.

As a part of their analysis, they extrapolated the data for a potential scenario where 100% of the world’s auto demand came from Chevy Bolts, instead of the current auto mix.

The Implications

If global demand suddenly flipped in this fashion, here’s what would happen:

MaterialDemand increaseNotes
Lithium2,898%Needed in all lithium-ion batteries
Cobalt1,928%Used in the Bolt's NMC cathode
Rare Earths655%Bolt uses neodymium in permanent magnet motor
Graphite524%Used in the anode of lithium-ion batteries
Nickel105%Used in the Bolt's NMC cathode
Copper22%Used in permanent magnet motor and wiring
Manganese14%Used in the Bolt's NMC cathode
Aluminum13%Used to reduce weight of vehicle
Silicon0%Bolt uses 6-10x more semiconductors
Steel-1%Uses 7% less steel, but fairly minimal impact on market
PGMs-53%Catalytic converters not needed in EVs

Some caveats we think are worth noting:

The Bolt is not a Tesla
The Bolt uses an NMC cathode formulation (nickel, manganese, and cobalt in a 1:1:1 ratio), versus Tesla vehicles which use NCA cathodes (nickel, cobalt, and aluminum, in an estimated 16:3:1 ratio). Further, the Bolt uses an permanent-magnet synchronous motor, which is different from Tesla’s AC induction motor – the key difference there being rare earth usage.

Big Markets, small markets:
Lithium, cobalt, and graphite have tiny markets, and they will explode in size with any notable increase in EV demand. The nickel market, which is more than $20 billion per year, will also more than double in this scenario. It’s also worth noting that the Bolt uses low amounts of nickel in comparison to Tesla cathodes, which are 80% nickel.

Meanwhile, the 100% EV scenario barely impacts the steel market, which is monstrous to begin with. The same can be said for silicon, even though the Bolt uses 6-10x more semiconductors than a regular car. The market for PGMs like platinum and palladium, however, gets decimated in this hypothetical scenario – that’s because their use as catalysts in combustion engines are a primary source of demand.

Subscribe to Visual Capitalist
Click for Comments

Technology

Visualizing the Critical Metals in a Smartphone

Smartphones can contain ~80% of the stable elements on the periodic table. This graphic details the critical metals you carry in your pocket.

Published

on

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

This post was originally featured on Elements

Continue Reading

Technology

Which Companies Belong to the Elite Trillion-Dollar Club?

Only a few companies have broken the 13-digit market cap barrier to join the $1T+ club. Who’s a member, and who’s hot on their heels?

Published

on

Which Companies Belong to the Elite Trillion-Dollar Club?

Just a handful of publicly-traded companies have managed to achieve $1 trillion or more in market capitalization—only six, to be precise.

We pull data from Companies Market Cap to find out which familiar names are breaking the 13-digit barrier—and who else is waiting in the wings.

Footnote: All data referenced is as of August 17, 2021.

The Major Players in the Game

Apple and Microsoft are the only two companies to have shattered the $2T market cap milestone to date, leaving others in the dust. Apple was also the first among its Big Tech peers to ascend to the $1 trillion landmark back in 2018.

CompanyValuationCountryAge of company
Apple$2.48T🇺🇸 U.S.45 years (Founded 1976)
Microsoft$2.20T🇺🇸 U.S.46 years (Founded 1975)
Saudi Aramco$1.88T🇸🇦 Saudi Arabia88 years (Founded 1933)
Alphabet (Google)$1.83T🇺🇸 U.S.23 years (Founded 1998)
Amazon$1.64T🇺🇸 U.S.27 years (Founded 1994)
Facebook$1.01T🇺🇸 U.S.17 years (Founded 2004)

Facebook dipped in and out of the $1T+ club in July 2021, and continues its capricious movement. With just 17 years under its belt, it’s the youngest company ever to reach this valuation milestone—though not without some wild rides along the way.

State-owned oil and gas giant Saudi Aramco is the only non-American company to make the trillion-dollar club. This makes it a notable outlier, as American companies typically dominate the leaderboard of the biggest corporations around the world.

Who Else Might Join the Trillion-Dollar Club?

Companies with a market capitalization above $500 billion are also few and far between. Within this next list of six companies, the world’s most valuable automaker Tesla is another strong candidate to eventually join the Four Comma Club.

As per usual, analyst views on Tesla are quite varied. That said, some on Wall Street are predicting that Tesla might reach $3 trillion in market cap within the decade, owing to significant current and projected demand for electric vehicles (EVs) and driverless systems.

CompanyValuationCountryAge of company
Tesla$659B🇺🇸 U.S.17 years (Founded 2003)
Berkshire Hathaway$655B🇺🇸 U.S.182 years (Founded 1839)
TSMC$576B🇹🇼 Taiwan34 years (Founded 1987)
Tencent$537B🇨🇳 China23 years (Founded 1998)
Visa$515B🇺🇸 U.S.63 years (Founded 1958)

Visa, one of the pioneers of consumer credit in the United States, continues to innovate even 63 years after its founding. In attempts to expand the reach of its already massive payments ecosystem, Visa is experimenting with acquisitions, and even dipping its toes into cryptocurrency with some success.

Whether the next company to join the trillion-dollar club comes from the U.S., from the tech industry, or out of left field, it’s clear that it has some pretty big shoes to fill.

Continue Reading

Subscribe

Popular