A Map of Every Object in Our Solar System - Visual Capitalist
Connect with us


A Map of Every Object in Our Solar System



View the full-size version of this infographic.

solar system map

A Map of Every Object in Our Solar System

View the high resolution version of this incredible map by clicking here

The path through the solar system is a rocky road.

Asteroids, comets, planets and moons and all kinds of small bodies of rock, metals, minerals and ice are continually moving as they orbit the sun. In contrast to the simple diagrams we’re used to seeing, our solar system is a surprisingly crowded place.

In this stunning visualization, biologist Eleanor Lutz painstakingly mapped out every known object in Earth’s solar system (>10km in diameter), hopefully helping you on your next journey through space.

Data-Driven Solar System

This particular visualization combines five different data sets from NASA:

Objects in solar system

Source: Tabletop Whale

From this data, Lutz mapped all the orbits of over 18,000 asteroids in the solar system, including 10,000 that were at least 10km in diameter, and about 8,000 objects of unknown size.

This map shows each asteroid’s position on New Year’s Eve 1999.

The Pull of Gravity

When plotting the objects, Lutz observed that the solar system is not arranged in linear distances. Rather, it is logarithmic, with exponentially more objects situated close to the sun. Lutz made use of this observation to space out their various orbits of the 18,000 objects in her map.

What she is visualizing is the pull of the sun, as the majority of objects tend to gravitate towards the inner part of the solar system. This is the same observation Sir Isaac Newton used to develop the concept of gravity, positing that heavier objects produce a bigger gravitational pull than lighter ones. Since the sun is the largest object in our solar system, it has the strongest gravitational pull.

If the sun is continually pulling at the planets, why don’t they all fall into the sun? It’s because the planets are moving sideways at the same time.

orbiting around the sun

Without that sideways motion, the objects would fall to the center – and without the pull toward the center, it would go flying off in a straight line.

This explains the clustering of patterns in solar systems, and why the farther you travel through the solar system, the bigger the distance and the fewer the objects.

The Top Ten Non-Planets in the Solar System

We all know that the sun and the planets are the largest objects in our corner of the universe, but there are many noteworthy objects as well.

1Ganymede3,273 mi (5,268 km)Jupiter's largest moon
2Titan3,200 mi (5,151 km)Saturn's largest moon
3Callisto2,996 mi (4,821 km)Jupiter's second largest moon
4Io2,264 mi (3,643 km)Moon orbiting Jupiter
5Moon2,159 mi (3,474 km)Earth's only moon
6Europa1,940 mi (3,122 km)Moon orbiting Jupiter
7Triton1,680 mi (2,710 km)Neptune's largest moon
8Pluto1,476 mi (2,376 km)Dwarf planet
9Eris1,473 mi (2,372 km)Dwarf planet
10Titania981 mi (1,578 km)Uranus' largest moon

Source: Ourplnt.com

While the map only shows objects greater than 10 kilometers in diameter, there are plenty of smaller objects to watch out for as well.

An Atlas of Space

This map is one among many of Lutz’s space related visualizations. She is also in the process of creating an Atlas of Space to showcase her work.

As we reach further and further beyond the boundaries of earth, her work may come in handy the next time you make a wrong turn at Mars and find yourself lost in an asteroid belt.

“I knew I shoulda taken that left turn at Albuquerque!”

Subscribe to Visual Capitalist
Click for Comments


Mapped: The 3 Billion People Who Can’t Afford a Healthy Diet

More than three billion people across the globe are unable to afford a healthy diet. See which countries are most affected.



The 3 Billion People Who Can’t Afford a Healthy Diet

While they aren’t often the focus of news media, hunger and undernourishment are problems plaguing millions of people every day.

According to the UN Food and Agriculture Organization (FAO), more than 3 billion people could not afford a healthy diet in 2020, an additional 112 million more people than in 2019. The increase was partly because of rising food prices, with the average cost of a healthy diet rising by 3.3% from 2019 levels.

As of August 2022, the FAO food price index was up 40.6% from average 2020 levels. Unless income levels increased by a similar magnitude, the healthy diet crisis is likely to have worsened, especially in low-income countries experiencing rampant food inflation.

Using data from the FAO, the above infographic maps the share of people unable to afford a healthy diet in 138 different countries as of 2020 (latest available data).

The Cost and Affordability of a Healthy Diet

According to the FAO, a healthy diet is one that meets daily energy needs as well as requirements within the food and dietary guidelines created by the country.

The (un)affordability is measured by comparing the cost of a healthy diet to income levels in the country. If the cost exceeds 52% of an average household’s income, the diet is deemed unaffordable.

Here’s a look at the share of populations unable to afford a healthy diet, and the cost of such a diet around the world:

CountryPercent of population unable to afford a healthy dietCost of Healthy Diet (USD per Person per Day)
Burundi 🇧🇮97.2%$2.9
Madagascar 🇲🇬97.0%$3.2
Liberia 🇱🇷96.8%$3.9
Malawi 🇲🇼96.6%$3.1
Nigeria 🇳🇬95.9%$4.1
Central African Republic 🇨🇫95.1%$3.6
Guinea 🇬🇳94.9%$4.1
Angola 🇦🇴94.3%$4.5
Congo 🇨🇬92.4%$3.4
Sudan 🇸🇩91.8%$4.3
Mozambique 🇲🇿91.5%$3.2
Democratic Republic of Congo 🇨🇩90.0%$2.1
Sierra Leone 🇸🇱89.2%$2.9
Niger 🇳🇪88.8%$2.9
Zambia 🇿🇲88.0%$3.3
Tanzania 🇹🇿87.6%$2.7
Guinea-Bissau 🇬🇼87.2%$3.5
Ethiopia 🇪🇹86.8%$3.4
Rwanda 🇷🇼86.3%$2.7
Haiti 🇭🇹85.9%$4.5
Sao Tome and Principe 🇸🇹84.7%$3.6
Nepal 🇳🇵84.0%$4.4
Lesotho 🇱🇸83.5%$4.3
Pakistan 🇵🇰83.5%$3.7
Chad 🇹🇩83.4%$2.8
Benin 🇧🇯82.9%$3.7
Uganda 🇺🇬82.2%$2.7
Kenya 🇰🇪81.1%$3.0
Burkina Faso 🇧🇫80.1%$3.3
Laos 🇱🇦79.8%$4.1
Mali 🇲🇱74.3%$3.1
Bangladesh 🇧🇩73.5%$3.1
Egypt 🇪🇬72.9%$3.4
Eswatini 🇸🇿71.8%$3.4
India 🇮🇳70.5%$3.0
Indonesia 🇮🇩69.1%$4.5
Philippines 🇵🇭68.6%$4.1
Jamaica 🇯🇲66.2%$6.7
South Africa 🇿🇦65.2%$4.3
Myanmar 🇲🇲65.1%$4.2
Gambia 🇬🇲64.0%$3.1
Djibouti 🇩🇯63.9%$3.1
Botswana 🇧🇼61.4%$3.7
Ghana 🇬🇭61.2%$4.0
Cameroon 🇨🇲60.7%$2.8
Mauritania 🇲🇷60.7%$3.7
Fiji 🇫🇯60.4%$3.9
Suriname 🇸🇷58.8%$5.7
Namibia 🇳🇦56.8%$3.5
Bhutan 🇧🇹53.0%$5.0
Mongolia 🇲🇳51.4%$5.1
Honduras 🇭🇳51.3%$3.5
Iraq 🇮🇶49.6%$3.5
Kyrgyzstan 🇰🇬49.6%$3.2
Sri Lanka 🇱🇰49.0%$3.9
Senegal 🇸🇳46.0%$2.3
Guyana 🇬🇾43.0%$4.9
Armenia 🇦🇲42.9%$3.2
Tajikistan 🇹🇯42.1%$3.5
Cabo Verde 🇨🇻38.1%$3.6
Belize 🇧🇿36.4%$2.1
Gabon 🇬🇦36.3%$3.6
Nicaragua 🇳🇮35.7%$3.3
Algeria 🇩🇿30.2%$3.8
Vietnam 🇻🇳30.0%$4.1
Colombia 🇨🇴26.5%$3.1
Mexico 🇲🇽26.3%$3.3
Bolivia 🇧🇴24.7%$3.8
Palestine 🇵🇸23.1%$3.4
Ecuador 🇪🇨21.4%$2.9
Saint Lucia 🇱🇨20.6%$3.6
Peru 🇵🇪20.5%$3.3
Iran 🇮🇷20.3%$3.6
Tunisia 🇹🇳20.3%$3.6
Albania 🇦🇱20.1%$4.2
Brazil 🇧🇷19.0%$3.1
Dominican Republic 🇩🇴18.3%$3.9
Panama 🇵🇦18.2%$4.5
North Macedonia 🇲🇰18.0%$3.4
Paraguay 🇵🇾17.8%$3.5
Montenegro 🇲🇪17.5%$3.5
Thailand 🇹🇭17.0%$4.3
Costa Rica 🇨🇷16.8%$4.1
Morocco 🇲🇦16.7%$2.8
Serbia 🇷🇸16.3%$4.2
Jordan 🇯🇴14.9%$3.6
Mauritius 🇲🇺13.5%$3.6
China 🇨🇳12.0%$3.0
Trinidad and Tobago 🇹🇹11.6%$4.2
Romania 🇷🇴8.8%$3.2
Bulgaria 🇧🇬8.5%$4.1
Seychelles 🇸🇨6.8%$3.8
Moldova 🇲🇩6.7%$2.8
Chile 🇨🇱3.8%$3.4
Croatia 🇭🇷3.8%$4.3
Bosnia and Herzegovina 🇧🇦3.7%$4.0
Uruguay 🇺🇾3.6%$3.4
Russia 🇷🇺3.5%$3.4
Greece 🇬🇷3.2%$3.1
Italy 🇮🇹2.9%$3.1
Japan 🇯🇵2.5%$5.8
Hungary 🇭🇺2.0%$3.5
Spain 🇪🇸2.0%$2.8
Malaysia 🇲🇾1.9%$3.5
Latvia 🇱🇻1.8%$3.2
South Korea 🇰🇷1.7%$5.2
United States 🇺🇸1.5%$3.4
Maldives 🇲🇻1.4%$3.9
Estonia 🇪🇪1.3%$3.3
Kazakhstan 🇰🇿1.2%$2.7
Lithuania 🇱🇹1.2%$3.1
Slovakia 🇸🇰1.2%$3.2
Israel 🇮🇱1.0%$2.5
Poland 🇵🇱1.0%$3.2
Austria 🇦🇹0.8%$3.0
Australia 🇦🇺0.7%$2.6
Canada 🇨🇦0.7%$3.0
Malta 🇲🇹0.7%$3.8
Sweden 🇸🇪0.6%$3.3
Portugal 🇵🇹0.5%$2.7
United Kingdom 🇬🇧0.5%$1.9
Denmark 🇩🇰0.4%$2.5
Norway 🇳🇴0.4%$3.5
Cyprus 🇨🇾0.3%$3.0
Belarus 🇧🇾0.2%$3.3
Belgium 🇧🇪0.2%$3.1
Germany 🇩🇪0.2%$3.0
Netherlands 🇳🇱0.2%$3.0
Finland 🇫🇮0.1%$2.7
France 🇫🇷0.1%$3.2
Ireland 🇮🇪0.1%$2.2
Luxembourg 🇱🇺0.1%$2.7
Slovenia 🇸🇮0.1%$3.1
Azerbaijan 🇦🇿0.0%$2.5
Iceland 🇮🇸0.0%$2.4
Switzerland 🇨🇭0.0%$2.7
United Arab Emirates 🇦🇪0.0%$3.1
World 🌎42.0%$3.5

In 52 countries, more than half of the population cannot afford a healthy diet. The majority of these are in Africa, with the rest located across Asia, Oceania, and the Americas.

By contrast, in four countries—Azerbaijan, Iceland, Switzerland, and the UAE—everyone is able to afford a healthy diet. The picture is similar for most European and developed high-income countries, where more than 95% of the population can afford a healthy diet.

When the percentages are translated into numbers, Asia contains the most number of people unable to afford a healthy diet at 1.89 billion, of which 973 million people are in India alone. Another 1 billion people are in Africa, with around 151 million people in the Americas and Oceania.

While hunger is a worldwide concern, it is particularly acute in African countries, which cover all of the top 20 spots in the above table.

Africa’s Deepening Food Crisis

In many countries across sub-Saharan Africa, more than 90% of the population cannot afford a healthy diet.

Sub-Saharan Africa is particularly susceptible to extreme climate events and the resulting volatility in food prices. Roughly one-third of the world’s droughts occur in the region, and some sub-Saharan countries are also heavily reliant on imports for food.

Russia’s invasion of Ukraine has deepened the crisis, with many African countries importing over 50% of their wheat from the two countries in conflict. The rising food prices from this supply chain disruption have resulted in double-digit food inflation in many African nations, which means that more people are likely to be unable to afford healthy diets.

The Horn of Africa region at the Eastern tip of Africa is particularly in turmoil. All the countries in the region are reliant on wheat from Russia and Ukraine, with Eritrea (100%) and Somalia (>90%) high up in the import dependency chart. Additionally, the region is facing its worst drought in 40 years alongside ongoing political conflicts. As a result, 22 million people are at risk of starvation.

Population Growth and Food Insecurity

In November of 2022, the global population is projected to surpass 8 billion people, and many of the fastest growing countries are also food-insecure.

By 2050, the global population is likely to increase by 35%, and to meet the growing demand for food, crop production will need to double. Given that agriculture is one of the biggest contributors to greenhouse gas emissions, this increase in crop production will also need to be environmentally sustainable.

As the impacts of climate change intensify and food demand increases, reducing food waste, building climate-resilient agricultural infrastructure, and improving agricultural productivity will all play a key role in reducing the levels of food insecurity sustainably.

world at 8 billion report

Get our new “The World at 8 Billion” report and webinar by becoming a VC+ member


Continue Reading


Visualizing the Range of Electric Cars vs. Gas-Powered Cars

With range anxiety being a barrier to EV adoption, how far can an electric car go on one charge, and how do EV ranges compare with gas cars?



The Range of Electric Cars vs. Gas-Powered Cars

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

EV adoption has grown rapidly in recent years, but many prospective buyers still have doubts about electric car ranges.

In fact, 33% of new car buyers chose range anxiety—the concern about how far an EV can drive on a full charge—as their top inhibitor to purchasing electric cars in a survey conducted by EY.

So, how far can the average electric car go on one charge, and how does that compare with the typical range of gas-powered cars?

The Rise in EV Ranges

Thanks to improvements in battery technology, the average range of electric cars has more than doubled over the last decade, according to data from the International Energy Agency (IEA).

YearAvg. EV RangeMaximum EV Range
201079 miles (127 km)N/A
201186 miles (138 km)94 miles (151 km)
201299 miles (159 km)265 miles (426 km)
2013117 miles (188 km)265 miles (426 km)
2014130 miles (209 km)265 miles (426 km)
2015131 miles (211 km)270 miles (435 km)
2016145 miles (233 km)315 miles (507 km)
2017151 miles (243 km)335 miles (539 km)
2018189 miles (304 km)335 miles (539 km)
2019209 miles (336 km)370 miles (595 km)
2020210 miles (338 km)402 miles (647 km)
2021217 miles (349 km)520 miles* (837 km)

*Max range for EVs offered in the United States.
Source: IEA, U.S. DOE

As of 2021, the average battery-powered EV could travel 217 miles (349 km) on a single charge. It represents a 44% increase from 151 miles (243 km) in 2017 and a 152% increase relative to a decade ago.

Despite the steady growth, EVs still fall short when compared to gas-powered cars. For example, in 2021, the median gas car range (on one full tank) in the U.S. was around 413 miles (664 km)—nearly double what the average EV would cover.

As automakers roll out new models, electric car ranges are likely to continue increasing and could soon match those of their gas-powered counterparts. It’s important to note that EV ranges can change depending on external conditions.

What Affects EV Ranges?

In theory, EV ranges depend on battery capacity and motor efficiency, but real-world results can vary based on several factors:

  • Weather: At temperatures below 20℉ (-6.7℃), EVs can lose around 12% of their range, rising to 41% if heating is turned on inside the vehicle.
  • Operating Conditions: Thanks to regenerative braking, EVs may extend their maximum range during city driving.
  • Speed: When driving at high speeds, EV motors spin faster at a less efficient rate. This may result in range loss.

On the contrary, when driven at optimal temperatures of about 70℉ (21.5℃), EVs can exceed their rated range, according to an analysis by Geotab.

The 10 Longest-Range Electric Cars in America

Here are the 10 longest-range electric cars available in the U.S. as of 2022, based on Environmental Protection Agency (EPA) range estimates:

CarRange On One Full ChargeEstimated Base Price
Lucid Air520 miles (837 km)$170,500
Tesla Model S405 miles (652 km)$106,190
Tesla Model 3358 miles (576 km)$59,440
Mercedes EQS350 miles (563 km)$103,360
Tesla Model X348 miles (560 km)$122,440
Tesla Model Y330 miles (531 km)$67,440
Hummer EV329 miles (529 km)$110,295
BMW iX324 miles (521 km)$84,195
Ford F-150 Lightning320 miles (515 km)$74,169
Rivian R1S316 miles (509 km)$70,000

Source: Car and Driver

The top-spec Lucid Air offers the highest range of any EV with a price tag of $170,500, followed by the Tesla Model S. But the Tesla Model 3 offers the most bang for your buck if range and price are the only two factors in consideration.

Continue Reading