Connect with us

Energy

Lithium-Cobalt Batteries: Powering the Electric Vehicle Revolution

Published

on

The following content is sponsored by Fuse Cobalt.

Lithium-cobalt batteries in electric vehicles

Lithium-Cobalt Batteries: Powering the EV Revolution

Countries across the globe are working towards a greener future and electric vehicles (EVs) are a key piece of the puzzle.

In fact, the EV revolution is well underway, rising from 17,000 electric cars in 2010 to 7.2 million in 2019—a 423x increase in less than a decade. At the same time, we often take for granted the variety of materials that make modern technology work. Going electric requires the use of strategic minerals, especially cobalt.

Today’s infographic comes to us from Fuse Cobalt and looks into how the cobalt in lithium batteries makes the difference for powerful and reliable battery technology.

Edging Over the Competition: The Lithium-Cobalt Combination

There are five primary lithium battery combinations for EVs, each with pros and cons:

  • Lithium Nickel Cobalt Aluminum (NCA)
  • Lithium Nickel Manganese Cobalt (NMC)
  • Lithium Manganese Oxide (LMO)
  • Lithium Titanate (LTO)
  • Lithium Iron Phosphate (LFP)

From the plethora of lithium-ion battery compositions, EV manufacturers prefer the lithium-cobalt combination. As a result, NCA and NMC batteries are the most prevalent in EVs.

NCA batteriesNMC batteries
Offer high specific energy and power
Allow EVs to travel farther
Offer a similar caliber of performance
Use less cobalt, making them less expensive
More prone to overheating
Use more cobalt, making them more expensive
Higher overall safety
Commonly found in Tesla EVsCommonly found in Nissan, Chevrolet, and BMW EVs

The low energy density and power of the other batteries make them impractical for long-range EVs—and it’s partially due to the lack of cobalt.

Why Lithium-Cobalt?

When it comes to powering EVs, lithium-cobalt batteries are unmatched. Specific properties of cobalt make them stand out from the rest:

  • High energy density
  • Thermal stability
  • High specific power
  • Low self-discharge rate
  • Low weight
  • Recyclability

Not only do lithium-cobalt batteries allow EVs to travel farther, but they also improve safety and sustainability.

Cobalt: The Stable Battery Element

Cobalt’s high energy density allows batteries to pack more energy in smaller spaces, making them lightweight and powerful at the same time. In addition, its ability to withstand high temperatures increases the safety and reliability of EVs.

Furthermore, cobalt increases the longevity of batteries and remains highly recyclable, promoting a more sustainable battery supply chain.

Despite its advantages, EV manufacturers are making efforts to reduce the cobalt content of their batteries for various reasons associated with its supply chain:

  • Cobalt is a by-product of nickel and copper mining, which makes it harder to obtain.
  • Cobalt is expensive, at US$33,000/tonne—more than twice the price of nickel.
  • The general public associates cobalt mining in the Congo with child labor, tough conditions, and corruption.

Although cobalt may be associated with unethical mining practices, it still remains essential to EV manufacturers—as demonstrated by Tesla’s agreement to buy 6,000 tonnes of cobalt annually from mining giant Glencore.

Combating Cobalt’s Ethical Concerns

EV manufacturers and miners have joined forces with organizations that are making efforts to alleviate the ethical issues associated with cobalt mining. These include:

  • Fair Cobalt Alliance
  • Responsible Minerals Initiative
  • Responsible Cobalt Initiative
  • Clean Cobalt Initiative

As these initiatives progress, we may see a future with ethically mined cobalt in EV batteries, including cobalt mined in more jurisdictions outside of the DRC.

For the time being, it’s interesting to see how lithium-cobalt batteries power up an EV.

Breaking Down a Lithium-Cobalt Battery

Lithium-Cobalt batteries have three key components:

  • The cathode is an electrode that carries a positive charge, and is made of lithium metal oxide combinations of cobalt, nickel, manganese, iron, and aluminum.
  • The anode is an electrode that carries a negative charge, usually made of graphite.
  • The electrolyte is a lithium salt in liquid or gel form, and allows the ions to flow from the cathode to the anode (and vice versa).

How it Works

When the battery is charged, lithium ions flow via the electrolyte from the cathode to the anode, where they are stored for usage. Simultaneously, electrons pass through an external circuit and are collected in the anode through a negative current collector.

When the battery is generating an electric current (i.e. discharging), the ions flow via the electrolyte from the anode to the cathode, and the electrons reverse direction along the external circuit, powering up the EV.

The composition of the cathode largely determines battery performance. For EV batteries, this is where the lithium-cobalt combination plays a crucial role.

The EV market could experience colossal growth over the next decade, but it faces several roadblocks. At present, EV charging infrastructure is expensive and not as convenient as the local gas station—and lithium-cobalt batteries could help overcome this obstacle.

Battery Storage: The Future of EV Charging Stations?

There are the two ways to charge an electric vehicle battery:

  1. Alternating Current (AC) chargers provide an alternating current, which periodically reverses direction.
  2. Direct Current (DC) fast chargers provide direct current that moves only in one direction.

But there’s a catch.

EV batteries can only store energy in the form of direct current. To charge an EV battery, the onboard charger must convert the alternating current from AC chargers into direct current, increasing charging times substantially.

Today, EV chargers are available in three different types:

Type of ChargerDescriptionMax energy drawn per hourCharge time
(60-kWH EV battery)
Alternating Current (AC) Level 1Charge via a 120-volt AC plug
1.4kW2,400 minutes
Alternating Current (AC) Level 2Charge via a 240-volt AC plug7.2kW500 minutes
Direct Current (DC)Charge EVs rapidly, but are more expensive to install and use50-350kWRange between 10-75 minutes

Meanwhile, several roadblocks still discourage EV buyers, from the lack of charging infrastructure to long charging times.

Stationary battery storage could be the solution.

Stationary Battery Storage: Solving the EV Charging Enigma

Charged batteries can provide EVs with direct current without drawing power from the grid during times of high demand. This can significantly reduce the demand charges of electricity, which account for a large portion of a charging station’s electricity bill.

The highest rate of electricity usage at a particular time determines the demand charges, separate from the cost of actual energy consumed. In other words, demand charges can be astronomical at times when multiple vehicles are charged via power from the grid.

Stationary battery storage systems could be charged from the grid at times of low demand, and used to provide direct current to vehicles during times of high demand.

As a result, this could dramatically reduce charging times as well as the cost of electricity.

Enabling Stationary Battery Storage

Developing stationary battery storage systems on a large scale is expensive. Lithium-cobalt batteries could mitigate these costs through their recyclability.

Unless damaged beyond repair, recycling companies can refurbish lithium-cobalt battery packs for a second life as stationary storage systems.

Re-using batteries promotes a circular economy and reduces waste, pollution, and costs. Not only would this improve charging infrastructure, but it would also create a more sustainable supply chain for EV batteries.

Lithium-Cobalt Batteries: Here to Stay

Despite efforts to reduce the cobalt contents in batteries, the lithium-cobalt combination remains the optimal technology for EV batteries.

Growth is imminent in the EV market, and lithium-cobalt batteries could take center stage in improving both vehicle performance, and charging infrastructure.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Click for Comments

Energy

Visualizing China’s Energy Transition in 5 Charts

This infographic takes a look at what China’s energy transition plans are to make its energy mix carbon neutral by 2060.

Published

on

China Energy Mix

Visualizing China’s Energy Transition in 5 Charts

In September 2020, China’s President Xi Jinping announced the steps his nation would take to reach carbon neutrality by 2060 via videolink before the United Nations Assembly in New York.

This infographic takes a look at what this ambitious plan for China’s energy would look like and what efforts are underway towards this goal.

China’s Ambitious Plan

A carbon-neutral China requires changing the entire economy over the next 40 years, a change the IEA compares to the ambition of the reforms that industrialized the country’s economy in the first place.

China is the world’s largest consumer of electricity, well ahead of the second place consumer, the United States. Currently, 80% of China’s energy comes from fossil fuels, but this plan envisions only 14% coming from coal, oil, and natural gas in 2060.

Energy Source20252060% Change
Coal52%3%-94%
Oil18%8%-56%
Natural Gas10%3%-70%
Wind4%24%+500%
Nuclear3%19%+533%
Biomass2%5%+150%
Solar3%23%+667%
Hydro8%15%+88%

Source: Tsinghua University Institute of Energy, Environment and Economy; U.S. EIA

According to the Carbon Brief, China’s 14th five-year plan appears to enshrine Xi’s goal. This plan outlines a general and non specific list of projects for a new energy system. It includes the construction of eight large-scale clean energy centers, coastal nuclear power, electricity transmission routes, power system flexibility, oil-and-gas transportation, and storage capacity.

Progress Towards Renewables?

While the goal seems far off in the future, China is on a trajectory towards reducing the carbon emissions of its electricity grid with declining coal usage, increased nuclear, and increased solar power capacity.

According to ChinaPower, coal fueled the rise of China with the country using 144 million tonnes of oil equivalent “Mtoe” in 1965, peaking at 1,969 Mtoe in 2013. However, its share as part of the country’s total energy mix has been declining since the 1990s from ~77% to just under ~60%.

Another trend in China’s energy transition will be the greater consumption of energy as electricity. As China urbanized, its cities expanded creating greater demand for electricity in homes, businesses, and everyday life. This trend is set to continue and approach 40% of total energy consumed by 2030 up from ~5% in 1990.

Under the new plan, by 2060, China is set to have 42% of its energy coming from solar and nuclear while in 2025 it is only expected to be 6%. China has been adding nuclear and solar capacity and expects to add the equivalent of 20 new reactors by 2025 and enough solar power for 33 million homes (110GW).

Changing the energy mix away from fossil fuels, while ushering in a new economic model is no small task.

Up to the Task?

China is the world’s factory and has relatively young industrial infrastructure with fleets of coal plants, steel mills, and cement factories with plenty of life left.

However, China also is the biggest investor in low-carbon energy sources, has access to massive technological talent, and holds a strong central government to guide the transition.

The direction China takes will have the greatest impact on the health of the planet and provide guidance for other countries looking to change their energy mixes, for better or for worse.

The world is watching…even if it’s by videolink.

Continue Reading

Energy

Visualizing the Flow of U.S. Energy Consumption

From renewables to fossil fuels, we’ve visualized the diverse mix of energy sources that powered U.S. energy consumption in 2020.

Published

on

Breaking Down America’s Energy Consumption in 2020

The United States relies on a complex mix of energy sources to fuel the country’s various end-sectors’ energy consumption.

While this energy mix is still dominated by fossil fuels, there are signs of a steady shift to renewable energy over the past decade.

This radial Sankey diagram using data from the EIA (Energy Information Administration) breaks down U.S. energy consumption in 2020, showing us how much each sector relies on various energy sources.

The Balance of Energy Production and Consumption

In 2019 and now in 2020, America’s domestic energy production has actually been greater than its consumption—a development that hasn’t taken place since 1957.

Last year’s numbers were severely impacted by the COVID-19 pandemic, seeing a 5% drop in energy production and a 7% drop in consumption compared to 2019. Total energy production and consumption for 2020 came in at 95.75 and 92.94 quads respectively.

The energy amounts are equalized and measured in quadrillion BTUs (British thermal units), also known as quads. A quad is a huge amount of energy, equivalent to 183 million barrels of petroleum or 36 million tonnes of coal.

So how is America’s overall energy production and consumption split between energy sources?

U.S. Energy Production and Consumption Share by Source

Energy SourcePercentage of U.S. Energy ProductionPercentage of U.S. Energy Consumption
Petroleum32%35%
Natural Gas36%34%
Renewable Energy12%12%
Coal11%10%
Nuclear9%9%

Source: IEA

America’s new margin of energy production over consumption has resulted in the country being a net total energy exporter again, providing some flexibility as the country continues its transition towards more sustainable and renewable energy sources.

Fossil Fuels Still Dominate U.S. Energy Consumption

While America’s mix of energy consumption is fairly diverse, 79% of domestic energy consumption still originates from fossil fuels. Petroleum powers over 90% of the transportation sector’s consumption, and natural gas and petroleum make up 74% of the industrial sector’s direct energy consumption.

There are signs of change as consumption of the dirtiest fossil fuel, coal, has declined more than 58% since its peak in 2005. Coinciding with this declining coal dependence, consumption from renewable energy has increased for six years straight, setting record highs again in 2020.

However, fossil fuels still make up 79% of U.S. energy consumption, with renewables and nuclear accounting for the remaining 21%. The table below looks at the share of specific renewable energy sources in 2020.

Distribution of Renewable Energy Sources

Renewable Energy Source2020 Energy Consumption in QuadsShare of 2020 Renewable Energy Consumption
Biomass4.5239%
Wind3.0126%
Hydroelectric2.5522%
Solar1.2711%
Geothermal0.232%

Source: IEA

The Nuclear Necessity for a Zero-Emission Energy Transition

It’s not all up to renewable energy sources to clean up America’s energy mix, as nuclear power will play a vital role in reducing carbon emissions. Technically not a renewable energy source due to uranium’s finite nature, nuclear energy is still a zero-emission energy that has provided around 20% of total annual U.S. electricity since 1990.

Support for nuclear power has been growing slowly, and last year was the first which saw nuclear electricity generation overtake coal. However, this might not last as three nuclear plants including New York’s Indian Point nuclear plant are set to be decommissioned in 2021, with a fourth plant scheduled for retirement in 2022.

It’s worth noting that while other countries might have a higher share of nuclear energy in their total electricity generation, the U.S. still has the largest nuclear generation capacity worldwide and has generated more nuclear electricity than any other country in the world.

Converting Energy to Electricity

The energy produced by nuclear power plants doesn’t go directly to its end-use sector, rather, 100% of nuclear energy in the U.S. is converted to electricity which is sold to consumers. Along with nuclear, most energy sources aside from petroleum are primarily converted to electricity.

Unfortunately, electricity conversion is a fairly inefficient process, with around 65% of the energy lost in the conversion, transmission, and distribution of electricity.

This necessary but wasteful step allows for the storage of energy in electrical form, ensuring that it can be distributed properly. Working towards more efficient methods of energy to electricity conversion is an often forgotten aspect of reducing wasted energy.

Despite the dip in 2020, both energy production and consumption in the U.S. are forecasted to continue rising. As Biden aims to reduce greenhouse gas emissions by 50% by 2030 (from 2005 emission levels), U.S. energy consumption will inevitably continue to shift away from fossil fuels and towards renewable and nuclear energy.

Continue Reading

Subscribe

Join the 250,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular