Lithium-Cobalt Batteries: Powering the Electric Vehicle Revolution - Visual Capitalist
Connect with us

Energy

Lithium-Cobalt Batteries: Powering the Electric Vehicle Revolution

Published

on

The following content is sponsored by Fuse Cobalt.

Lithium-cobalt batteries in electric vehicles

Lithium-Cobalt Batteries: Powering the EV Revolution

Countries across the globe are working towards a greener future and electric vehicles (EVs) are a key piece of the puzzle.

In fact, the EV revolution is well underway, rising from 17,000 electric cars in 2010 to 7.2 million in 2019—a 423x increase in less than a decade. At the same time, we often take for granted the variety of materials that make modern technology work. Going electric requires the use of strategic minerals, especially cobalt.

Today’s infographic comes to us from Fuse Cobalt and looks into how the cobalt in lithium batteries makes the difference for powerful and reliable battery technology.

Edging Over the Competition: The Lithium-Cobalt Combination

There are five primary lithium battery combinations for EVs, each with pros and cons:

  • Lithium Nickel Cobalt Aluminum (NCA)
  • Lithium Nickel Manganese Cobalt (NMC)
  • Lithium Manganese Oxide (LMO)
  • Lithium Titanate (LTO)
  • Lithium Iron Phosphate (LFP)

From the plethora of lithium-ion battery compositions, EV manufacturers prefer the lithium-cobalt combination. As a result, NCA and NMC batteries are the most prevalent in EVs.

NCA batteriesNMC batteries
Offer high specific energy and power
Allow EVs to travel farther
Offer a similar caliber of performance
Use less cobalt, making them less expensive
More prone to overheating
Use more cobalt, making them more expensive
Higher overall safety
Commonly found in Tesla EVsCommonly found in Nissan, Chevrolet, and BMW EVs

The low energy density and power of the other batteries make them impractical for long-range EVs—and it’s partially due to the lack of cobalt.

Why Lithium-Cobalt?

When it comes to powering EVs, lithium-cobalt batteries are unmatched. Specific properties of cobalt make them stand out from the rest:

  • High energy density
  • Thermal stability
  • High specific power
  • Low self-discharge rate
  • Low weight
  • Recyclability

Not only do lithium-cobalt batteries allow EVs to travel farther, but they also improve safety and sustainability.

Cobalt: The Stable Battery Element

Cobalt’s high energy density allows batteries to pack more energy in smaller spaces, making them lightweight and powerful at the same time. In addition, its ability to withstand high temperatures increases the safety and reliability of EVs.

Furthermore, cobalt increases the longevity of batteries and remains highly recyclable, promoting a more sustainable battery supply chain.

Despite its advantages, EV manufacturers are making efforts to reduce the cobalt content of their batteries for various reasons associated with its supply chain:

  • Cobalt is a by-product of nickel and copper mining, which makes it harder to obtain.
  • Cobalt is expensive, at US$33,000/tonne—more than twice the price of nickel.
  • The general public associates cobalt mining in the Congo with child labor, tough conditions, and corruption.

Although cobalt may be associated with unethical mining practices, it still remains essential to EV manufacturers—as demonstrated by Tesla’s agreement to buy 6,000 tonnes of cobalt annually from mining giant Glencore.

Combating Cobalt’s Ethical Concerns

EV manufacturers and miners have joined forces with organizations that are making efforts to alleviate the ethical issues associated with cobalt mining. These include:

  • Fair Cobalt Alliance
  • Responsible Minerals Initiative
  • Responsible Cobalt Initiative
  • Clean Cobalt Initiative

As these initiatives progress, we may see a future with ethically mined cobalt in EV batteries, including cobalt mined in more jurisdictions outside of the DRC.

For the time being, it’s interesting to see how lithium-cobalt batteries power up an EV.

Breaking Down a Lithium-Cobalt Battery

Lithium-Cobalt batteries have three key components:

  • The cathode is an electrode that carries a positive charge, and is made of lithium metal oxide combinations of cobalt, nickel, manganese, iron, and aluminum.
  • The anode is an electrode that carries a negative charge, usually made of graphite.
  • The electrolyte is a lithium salt in liquid or gel form, and allows the ions to flow from the cathode to the anode (and vice versa).

How it Works

When the battery is charged, lithium ions flow via the electrolyte from the cathode to the anode, where they are stored for usage. Simultaneously, electrons pass through an external circuit and are collected in the anode through a negative current collector.

When the battery is generating an electric current (i.e. discharging), the ions flow via the electrolyte from the anode to the cathode, and the electrons reverse direction along the external circuit, powering up the EV.

The composition of the cathode largely determines battery performance. For EV batteries, this is where the lithium-cobalt combination plays a crucial role.

The EV market could experience colossal growth over the next decade, but it faces several roadblocks. At present, EV charging infrastructure is expensive and not as convenient as the local gas station—and lithium-cobalt batteries could help overcome this obstacle.

Battery Storage: The Future of EV Charging Stations?

There are the two ways to charge an electric vehicle battery:

  1. Alternating Current (AC) chargers provide an alternating current, which periodically reverses direction.
  2. Direct Current (DC) fast chargers provide direct current that moves only in one direction.

But there’s a catch.

EV batteries can only store energy in the form of direct current. To charge an EV battery, the onboard charger must convert the alternating current from AC chargers into direct current, increasing charging times substantially.

Today, EV chargers are available in three different types:

Type of ChargerDescriptionMax energy drawn per hourCharge time
(60-kWH EV battery)
Alternating Current (AC) Level 1Charge via a 120-volt AC plug
1.4kW2,400 minutes
Alternating Current (AC) Level 2Charge via a 240-volt AC plug7.2kW500 minutes
Direct Current (DC)Charge EVs rapidly, but are more expensive to install and use50-350kWRange between 10-75 minutes

Meanwhile, several roadblocks still discourage EV buyers, from the lack of charging infrastructure to long charging times.

Stationary battery storage could be the solution.

Stationary Battery Storage: Solving the EV Charging Enigma

Charged batteries can provide EVs with direct current without drawing power from the grid during times of high demand. This can significantly reduce the demand charges of electricity, which account for a large portion of a charging station’s electricity bill.

The highest rate of electricity usage at a particular time determines the demand charges, separate from the cost of actual energy consumed. In other words, demand charges can be astronomical at times when multiple vehicles are charged via power from the grid.

Stationary battery storage systems could be charged from the grid at times of low demand, and used to provide direct current to vehicles during times of high demand.

As a result, this could dramatically reduce charging times as well as the cost of electricity.

Enabling Stationary Battery Storage

Developing stationary battery storage systems on a large scale is expensive. Lithium-cobalt batteries could mitigate these costs through their recyclability.

Unless damaged beyond repair, recycling companies can refurbish lithium-cobalt battery packs for a second life as stationary storage systems.

Re-using batteries promotes a circular economy and reduces waste, pollution, and costs. Not only would this improve charging infrastructure, but it would also create a more sustainable supply chain for EV batteries.

Lithium-Cobalt Batteries: Here to Stay

Despite efforts to reduce the cobalt contents in batteries, the lithium-cobalt combination remains the optimal technology for EV batteries.

Growth is imminent in the EV market, and lithium-cobalt batteries could take center stage in improving both vehicle performance, and charging infrastructure.

Click for Comments

Energy

Mapped: Solar Power by Country in 2021

In 2020, solar power saw its largest-ever annual capacity expansion at 127 gigawatts. Here’s a snapshot of solar power capacity by country.

Published

on

Solar Power by Country

Mapped: Solar Power by Country in 2021

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The world is adopting renewable energy at an unprecedented pace, and solar power is the energy source leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Here’s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China 🇨🇳 254,35514735.6%
U.S. 🇺🇸 75,57223110.6%
Japan 🇯🇵 67,0004989.4%
Germany 🇩🇪 53,7835937.5%
India 🇮🇳 39,211325.5%
Italy 🇮🇹 21,6003453.0%
Australia 🇦🇺 17,6276372.5%
Vietnam 🇻🇳 16,504602.3%
South Korea 🇰🇷 14,5752172.0%
Spain 🇪🇸 14,0891862.0%
United Kingdom 🇬🇧 13,5632001.9%
France 🇫🇷 11,7331481.6%
Netherlands 🇳🇱 10,2133961.4%
Brazil 🇧🇷 7,881221.1%
Turkey 🇹🇷 6,668730.9%
South Africa 🇿🇦 5,990440.8%
Taiwan 🇹🇼 5,8171720.8%
Belgium 🇧🇪 5,6463940.8%
Mexico 🇲🇽 5,644350.8%
Ukraine 🇺🇦 5,3601140.8%
Poland 🇵🇱 3,936340.6%
Canada 🇨🇦 3,325880.5%
Greece 🇬🇷 3,2472580.5%
Chile 🇨🇱 3,2051420.4%
Switzerland 🇨🇭 3,1182950.4%
Thailand 🇹🇭 2,988430.4%
United Arab Emirates 🇦🇪 2,5391850.4%
Austria 🇦🇹 2,2201780.3%
Czech Republic 🇨🇿 2,0731940.3%
Hungary 🇭🇺 1,9531310.3%
Egypt 🇪🇬 1,694170.2%
Malaysia 🇲🇾 1,493280.2%
Israel 🇮🇱 1,4391340.2%
Russia 🇷🇺 1,42870.2%
Sweden 🇸🇪 1,417630.2%
Romania 🇷🇴 1,387710.2%
Jordan 🇯🇴 1,3591000.2%
Denmark 🇩🇰 1,3001860.2%
Bulgaria 🇧🇬 1,0731520.2%
Philippines 🇵🇭 1,04890.1%
Portugal 🇵🇹 1,025810.1%
Argentina 🇦🇷 764170.1%
Pakistan 🇵🇰 73760.1%
Morocco 🇲🇦 73460.1%
Slovakia 🇸🇰 593870.1%
Honduras 🇭🇳 514530.1%
Algeria 🇩🇿 448100.1%
El Salvador 🇸🇻 429660.1%
Iran 🇮🇷 41450.1%
Saudi Arabia 🇸🇦 409120.1%
Finland 🇫🇮 391390.1%
Dominican Republic 🇩🇴 370340.1%
Peru 🇵🇪 331100.05%
Singapore 🇸🇬 329450.05%
Bangladesh 🇧🇩 30120.04%
Slovenia 🇸🇮 2671280.04%
Uruguay 🇺🇾 256740.04%
Yemen 🇾🇪 25380.04%
Iraq 🇮🇶 21650.03%
Cambodia 🇰🇭 208120.03%
Cyprus 🇨🇾 2001470.03%
Panama 🇵🇦 198460.03%
Luxembourg 🇱🇺 1952440.03%
Malta 🇲🇹 1843120.03%
Indonesia 🇮🇩 17210.02%
Cuba 🇨🇺 163140.02%
Belarus 🇧🇾 159170.02%
Senegal 🇸🇳 15580.02%
Norway 🇳🇴 152170.02%
Lithuania 🇱🇹 148370.02%
Namibia 🇳🇦 145550.02%
New Zealand 🇳🇿 142290.02%
Estonia 🇪🇪 130980.02%
Bolivia 🇧🇴 120100.02%
Oman 🇴🇲 109210.02%
Colombia 🇨🇴 10720.01%
Kenya 🇰🇪 10620.01%
Guatemala 🇬🇹10160.01%
Croatia 🇭🇷 85170.01%
World total 🌎 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the world’s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of China’s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the world’s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the world’s PV panels.

With that said, it’s no surprise that 5 of the world’s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

What’s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solar’s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and it’s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Continue Reading

Energy

Visualizing the Race for EV Dominance

Tesla was the first automaker to hit a $1 trillion market cap, but other electric car companies have plans to unseat the dominant EV maker.

Published

on

Electric Car Companies: Eating Tesla’s Dust

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Tesla has reigned supreme among electric car companies, ever since it first released the Roadster back in 2008.

The California-based company headed by Elon Musk ended 2020 with 23% of the EV market and recently became the first automaker to hit a $1 trillion market capitalization. However, competitors like Volkswagen hope to accelerate their own EV efforts to unseat Musk’s company as the dominant manufacturer.

This graphic based on data from EV Volumes compares Tesla and other top carmakers’ positions today—from an all-electric perspective—and gives market share projections for 2025.

Auto Majors Playing Catch-up

According to Wood Mackenzie, Volkswagen will become the largest manufacturer of EVs before 2030. In order to achieve this, the world’s second-biggest carmaker is in talks with suppliers to secure direct access to the raw materials for batteries.

It also plans to build six battery factories in Europe by 2030 and to invest globally in charging stations. Still, according to EV Volumes projections, by 2025 the German company is forecasted to have only 12% of the market versus Tesla’s 21%.

CompanySales 2020 Sales 2025 (projections)Market cap (Oct '21, USD)
Tesla499,0002,800,000$1,023B
Volkswagen Group230,0001,500,000$170B
BYD136,000377,000$113B
SGMW (GM, Wulling Motors, SAIC)211,0001,100,000$89B
BMW48,000455,000$67B
Daimler (Mercedes-Benz)55,000483,000$103B
Renault-Nissan-Mitsubishi191,000606,000$39B
Geely40,000382,000$34B
Hyundai -Kia145,000750,000$112B
Stellantis82,000931,000$63B
Toyota 11,000382,000$240B
Ford 1,400282,000$63B

Other auto giants are following the same track towards EV adoption.

GM, the largest U.S. automaker, wants to stop selling fuel-burning cars by 2035. The company is making a big push into pure electric vehicles, with more than 30 new models expected by 2025.

Meanwhile, Ford expects 40% of its vehicles sold to be electric by the year 2030. The American carmaker has laid out plans to invest tens of billions of dollars in electric and autonomous vehicle efforts in the coming years.

Tesla’s Brand: A Secret Weapon

When it comes to electric car company brand awareness in the marketplace, Tesla still surpasses all others. In fact, more than one-fourth of shoppers who are considering an EV said Tesla is their top choice.

“They’ve done a wonderful job at presenting themselves as the innovative leader of electric vehicles and therefore, this is translating high awareness among consumers…”

—Rachelle Petusky, Research at Cox Automotive Mobility Group

Tesla recently surpassed Audi as the fourth-largest luxury car brand in the United States in 2020. It is now just behind BMW, Lexus, and Mercedes-Benz.

The Dominance of Electric Car Companies by 2040

BloombergNEF expects annual passenger EV sales to reach 13 million in 2025, 28 million in 2030, and 48 million by 2040, outselling gasoline and diesel models (42 million).

As the EV market continues to grow globally, competitors hope to take a run at Tesla’s lead—or at least stay in the race.

Continue Reading

Subscribe

Popular