How Has Car Safety Improved Over 60 Years?
Connect with us

Misc

How Has Car Safety Improved Over 60 Years?

Published

on

Car Safety

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

How Has Car Safety Improved Over 60 Years?

Did you know that in 2019, there were 6.7 million car accidents in the U.S. alone?

This resulted in 36,096 deaths over the year—an awful statistic to say the least—but one that would be much worse if it weren’t for seatbelts, airbags, and other modern safety devices.

In this infographic, we’ve visualized data from the U.S. Bureau of Transportation to show how breakthroughs in car safety have drastically reduced the number of motor vehicle fatalities.

Measuring Safety Improvements

The data shows the number of fatalities for every 100 million miles driven. From a high of 5.1 in 1960 (the first year data is available), we can see that this metric has fallen by 78% to just 1.1.

YearFatilities per 100 million miles
19605.1
19704.7
19803.4
19902.1
20001.5
20101.1
20191.1

What makes this even more impressive is the fact that there are more cars on the road today than in 1960. This can be measured by the total number of miles driven each year.

Vehicle Miles Driven

So, while the total number of miles driven has increased by 371%, the rate of fatalities has decreased by 78%. Below, we’ll take a closer look at some important car safety innovations.

1. The Seatbelt

The introduction of seatbelts was a major stepping stone for improving car safety, especially as vehicles became capable of higher speeds.

The first iteration of seatbelts were a 2-point design because they only looped across a person’s waist (and thus had 2 points of mounting). This design is flawed because it doesn’t hold our upper body in place during a collision.

Today’s seatbelts use a 3-point design which was developed in 1959 by Nils Bohlin, an engineer at Volvo. This design adds a shoulder belt that holds our torso in place during a collision. It took many years for Volvo to not only develop the device, but also to convince the public to use it. The U.S., for instance, did not mandate 3-point seatbelts until 1973.

2. The Airbag

The concept of an airbag is relatively simple—rather than smacking our face against the steering wheel, we cushion the blow with an inflatable pillow.

In practice, however, airbags need to be very precise because it takes just 50 milliseconds for our heads to collide with the wheel in a frontal crash. To inflate in such a short period of time, airbags rely on a chemical reaction using sodium azide.

The design of an airbag’s internal mechanism can also cause issues, as was discovered during the Takata airbag recall. As these airbags inflated, there was a chance for them to also send metal shards flying through the cabin at high speeds.

Dual front airbags (one for each side) were mandated by the U.S. government in 1998. Today, many cars offer side curtain airbags as an option, but these are not required by law.

3. The Backup Camera

Backup cameras became a legal requirement in May 2018, making them one of the newest pieces of standard safety equipment in the U.S. These cameras are designed to reduce the number of backover crashes involving objects, pedestrians, or other cars.

Measuring the safety benefits of backup cameras can be tricky, but a 2014 study did conclude that cameras were useful for preventing collisions. A common criticism of backup cameras is that they limit our field of vision, as opposed to simply turning our heads to face the rear.

Taking Car Safety to the Next Level

According to the National Highway Traffic Safety Administration (NHTSA), having both seatbelts and airbags can reduce the chance of death from a head-on collision by 61%. That’s a big reduction, but there’s still plenty of room left on the table for further improvements.

As a result, automakers have been equipping their cars with many technology-enabled safety measures. This includes pre-collision assist systems which use sensors and cameras to help prevent an accident. These systems can prevent you from drifting into another lane (by actually adjusting the steering wheel), or apply the brakes to mitigate an imminent frontal collision.

Whether these systems have any meaningful benefit remains to be seen. Referring to the table above shows that fatalities per 100 million miles have not fallen any further since 2010.

Click for Comments

Misc

Visualizing Two Decades of Reported Hate Crimes in the U.S.

Hate crimes across the U.S. have been on the rise since 2014. Here’s a look at the most common types of offenses over the years.

Published

on

Two Decades of Hate Crimes in the U.S.

Visualizing Two Decades of Reported Hate Crimes in the U.S.

Across the U.S., thousands of hate crimes are committed each year, with many different motivating biases.

In 2020 alone, more than 10,000 unique hate crime incidents were reported to the Federal Bureau of Investigation (FBI)—and it’s likely that thousands more were committed that didn’t get reported to law enforcement.

What are the most commonly reported motivating biases, and how have hate crime rates evolved over the years? This graphic uses data from the FBI to visualize two decades of reported hate crime incidents across America.

What is Considered a Hate Crime?

Before diving in, it’s important to determine what constitutes a hate crime.

According to the U.S. Department of Justice, a hate crime is a crime that’s “committed on the basis of the victim’s perceived or actual race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.”

These types of crimes are a threat to society, as they have a broader impact on communities than other types of crimes do. This is because hate crimes can foster fear and intimidate large groups of people or marginalized communities, making them feel unwelcome, unsafe, or othered.

Hate Crimes on the Rise

Hate crimes have been rising across the U.S. in nearly every year since 2014. By 2020, reported crimes across America reached record-level highs not seen in over two decades.

YearNumber of Reported Incidents% Change (y-o-y)
2001973018.4%
20027485-23.1%
200375450.8%
200476851.9%
20057411-3.6%
200677154.1%
20077625-1.2%
200880395.4%
20096613-17.7%
201066330.3%
20116299-5.0%
201265944.7%
20136044-8.3%
20145599-7.4%
201558714.9%
201662766.9%
2017732116.7%
20187170-2.1%
2019789210.1%
20201029930.5%

And sadly, these figures are likely a vast undercount. Law enforcement submit this data to the FBI of their own volition, and in 2020, thousands of agencies did not submit their crime statistics.

Race-Related Hate Crimes are Most Common

Historically, the most reported hate crimes in the U.S. are related to race. In 2020, about 66% of incidents were motivated by discrimination against the victim’s race or ethnicity.

Type of BiasTotal Number of Crimes (2020)% of Total
Race/Ethnicity679366.0%
Religion162615.8%
Sexual Orientation131112.7%
Other5695.5%
Total10299--

While race is the most commonly reported hate crime, incidents related to gender and gender identity are on the rise—in 2020, there was a 9% increase in gender-related incidents, and a 34% increase in gender identity-related incidents, compared to 2019 figures.

Continue Reading

Science

Visualizing the Relationship Between Cancer and Lifespan

New research links mutation rates and lifespan. We visualize the data supporting this new framework for understanding cancer.

Published

on

Cancer and lifespan

A Newfound Link Between Cancer and Aging?

A new study in 2022 reveals a thought-provoking relationship between how long animals live and how quickly their genetic codes mutate.

Cancer is a product of time and mutations, and so researchers investigated its onset and impact within 16 unique mammals. A new perspective on DNA mutation broadens our understanding of aging and cancer development—and how we might be able to control it.

Mutations, Aging, and Cancer: A Primer

Cancer is the uncontrolled growth of cells. It is not a pathogen that infects the body, but a normal body process gone wrong.

Cells divide and multiply in our bodies all the time. Sometimes, during DNA replication, tiny mistakes (called mutations) appear randomly within the genetic code. Our bodies have mechanisms to correct these errors, and for much of our youth we remain strong and healthy as a result of these corrective measures.

However, these protections weaken as we age. Developing cancer becomes more likely as mutations slip past our defenses and continue to multiply. The longer we live, the more mutations we carry, and the likelihood of them manifesting into cancer increases.

A Biological Conundrum

Since mutations can occur randomly, biologists expect larger lifeforms (those with more cells) to have greater chances of developing cancer than smaller lifeforms.

Strangely, no association exists.

It is one of biology’s biggest mysteries as to why massive creatures like whales or elephants rarely seem to experience cancer. This is called Peto’s Paradox. Even stranger: some smaller creatures, like the naked mole rat, are completely resistant to cancer.

This phenomenon motivates researchers to look into the genetics of naked mole rats and whales. And while we’ve discovered that special genetic bonuses (like extra tumor-suppressing genes) benefit these creatures, a pattern for cancer rates across all other species is still poorly understood.

Cancer May Be Closely Associated with Lifespan

Researchers at the Wellcome Sanger Institute report the first study to look at how mutation rates compare with animal lifespans.

Mutation rates are simply the speed at which species beget mutations. Mammals with shorter lifespans have average mutation rates that are very fast. A mouse undergoes nearly 800 mutations in each of its four short years on Earth. Mammals with longer lifespans have average mutation rates that are much slower. In humans (average lifespan of roughly 84 years), it comes to fewer than 50 mutations per year.

The study also compares the number of mutations at time of death with other traits, like body mass and lifespan. For example, a giraffe has roughly 40,000 times more cells than a mouse. Or a human lives 90 times longer than a mouse. What surprised researchers was that the number of mutations at time of death differed only by a factor of three.

Such small differentiation suggests there may be a total number of mutations a species can collect before it dies. Since the mammals reached this number at different speeds, finding ways to control the rate of mutations may help stall cancer development, set back aging, and prolong life.

The Future of Cancer Research

The findings in this study ignite new questions for understanding cancer.

Confirming that mutation rate and lifespan are strongly correlated needs comparison to lifeforms beyond mammals, like fishes, birds, and even plants.

It will also be necessary to understand what factors control mutation rates. The answer to this likely lies within the complexities of DNA. Geneticists and oncologists are continuing to investigate genetic curiosities like tumor-suppressing genes and how they might impact mutation rates.

Aging is likely to be a confluence of many issues, like epigenetic changes or telomere shortening, but if mutations are involved then there may be hopes of slowing genetic damage—or even reversing it.

While just a first step, linking mutation rates to lifespan is a reframing of our understanding of cancer development, and it may open doors to new strategies and therapies for treating cancer or taming the number of health-related concerns that come with aging.

Continue Reading

Subscribe

Popular