Connect with us

Mining

The History of Tungsten, the Strongest Natural Metal on Earth

Published

on

The History of Tungsten, the Strongest Natural Metal on Earth

The History of Tungsten

With a tensile strength of 1,510 megapascals, we now know tungsten as the strongest naturally occurring metal on Earth.

Today’s infographic is from Almonty Industries, a tungsten producer, and it reveals the history of tungsten.

Interestingly, the infographic shows that despite tungsten’s strength, most of civilization has lived without any practical use of the metal. That’s because tungsten wasn’t officially discovered until the 18th century – though, as you will see, it was a thorn in the side of metallurgists for many centuries before that.

From the Heavens

Like all elements with an atomic number higher than iron, tungsten cannot be created by nuclear fusion in stars like our sun.

Instead, tungsten is thought to be formed from the explosions of massive stars. Each supernova explosion has so much energy, that these newly created elements are jettisoned at incredible speeds of 30,000 km/s, or 10% of the speed of light – and that’s how they get dispersed throughout the universe.

Supernova explosions don’t happen often – as a result, in every 1,000,000 grams of the Earth’s crust, there are only 1.25 grams of tungsten.

An Unusual History

In the periodic table, tungsten is listed under the letter “W”. That’s because two names for the same metal actually arose simultaneously.

“Wolfram”

WOLFRAM: derived from the German words WOLF (English: wolf) and the Middle High German word RAM (English: dirt).

In the Middle Ages, tin miners in Germany complained about a mineral (wolframite) that accompanied tin ore and reduced tin yields when smelting.

With a longish, hair-like appearance, wolframite was thought to be a “wolf” that ate up the tin. Wolframite had plagued metallurgists for many centuries, until tungsten was discovered and proper methods were developed to deal with the heavy metal.

“Tungsten”

TUNGSTEN: derived from the Swedish words TUNG (English: heavy) and STEN (English: stone) due to its density

Scheelite, the other important tungsten ore, was discovered in an iron mine in Sweden in 1750.

It garnered interest for its incredible density – which is why it was named “heavy stone”.

The Discovery

The metal was discovered by Spanish nobleman Juan José D´Elhuyar, who eventually synthesized tungsten from both wolframite and scheelite – showing they were both minerals from the same new element.

History of Tungsten Uses

Discoveries in tungsten use can be loosely linked to four fields: chemicals, steel and super alloys, filaments, and carbides.

1847: Tungsten salts are used to make colored cotton and to make clothes used for theatrical and other purposes fireproof.

1855: The Bessemer process is invented, allowing for the mass production of steel. At the same time, the first tungsten steels are being made in Austria.

1895: Thomas Edison investigated materials’ ability to fluoresce when exposed to X-rays, and found that calcium tungstate was the most effective substance.

1900: High Speed Steel, a special mix of steel and tungsten, is exhibited at the World Exhibition in Paris. It maintains its hardness at high temperatures, perfect for use in tools and machining.

1903: Filaments in lamps and lightbulbs were the first use of tungsten that made use of its extremely high melting point and its electrical conductivity. The only problem? Early attempts found tungsten to be too brittle for widespread use.

1909: William Coolidge and his team at General Electric the U.S. are successful in discovering a process that creates ductile tungsten filaments through suitable heat treatment and mechanical working.

1911: The Coolidge Process is commercialized, and in a short time tungsten light bulbs spread all over the world equipped with ductile tungsten wires.

1913: A shortage in industrial diamonds in Germany during WWII leads researchers to look for an alternative to diamond dies, which are used to draw wire.

1914: “It was the belief of some Allied military experts that in six months Germany would be exhausted of ammunition. The Allies soon discovered that Germany was increasing her manufacture of munitions and for a time had exceeded the output of the Allies. The change was in part due to her use of tungsten high-speed steel and tungsten cutting tools. To the bitter amazement of the British, the tungsten so used, it was later discovered, came largely from their Cornish Mines in Cornwall.” – From K.C. Li’s 1947 book “TUNGSTEN”

1923: A German electrical bulb company submits a patent for tungsten carbide, or hardmetal. It’s made by “cementing” very hard tungsten monocarbide (WC) grains in a binder matrix of tough cobalt metal by liquid phase sintering.

The result changed the history of tungsten: a material which combines high strength, toughness and high hardness. In fact, tungsten carbide is so hard, the only natural material that can scratch it is a diamond. (Carbide is the most important use for tungsten today.)

1930s: New applications arose for tungsten compounds in the oil industry for the hydrotreating of crude oils.

1940: The development of iron, nickel, and cobalt-based superalloys begin, to fill the need for a material that can withstand the incredible temperatures of jet engines.

1942: During World War II, the Germans were the first to use tungsten carbide core in high velocity armor piercing projectiles. British tanks virtually “melted” when hit by these tungsten carbide projectiles.

1945: Annual sales of incandescent lamps are 795 million per year in the U.S.

1950s: By this time, tungsten is being added into superalloys to improve their performance.

1960s: New catalysts were born containing tungsten compounds to treat exhaust gases in the oil industry.

1964: Improvements in efficiency and production of incandescent lamps reduce the cost of providing a given quantity of light by a factor of thirty, compared with the cost at introduction of Edison’s lighting system.

2000: At this point, about 20 billion meters of lamp wire are drawn each year, a length which corresponds to about 50 times the earth-moon distance. Lighting consumes 4% and 5% of the total tungsten production.

Tungsten Today

Today, tungsten carbide is extremely widespread, and its applications include metal cutting, machining of wood, plastics, composites, and soft ceramics, chipless forming (hot and cold), mining, construction, rock drilling, structural parts, wear parts and military components.

Tungsten steel alloys are also used the in the production of rocket engine nozzles, which must have good heat resistant properties. Super-alloys containing tungsten are used in turbine blades and wear-resistant parts and coatings.

However, at the same time, the reign of the incandescent lightbulb has come to an end after 132 years, as they start to get phased out in the U.S. and Canada.

Click for Comments

Uranium

Charted: Global Uranium Reserves, by Country

We visualize the distribution of the world’s uranium reserves by country, with 3 countries accounting for more than half of total reserves.

Published

on

A cropped chart visualizing the distribution of the global uranium reserves, by country.

Charted: Global Uranium Reserves, by Country

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

There can be a tendency to believe that uranium deposits are scarce from the critical role it plays in generating nuclear energy, along with all the costs and consequences related to the field.

But uranium is actually fairly plentiful: it’s more abundant than gold and silver, for example, and about as present as tin in the Earth’s crust.

We visualize the distribution of the world’s uranium resources by country, as of 2021. Figures come from the World Nuclear Association, last updated on August 2023.

Ranked: Uranium Reserves By Country (2021)

Australia, Kazakhstan, and Canada have the largest shares of available uranium resources—accounting for more than 50% of total global reserves.

But within these three, Australia is the clear standout, with more than 1.7 million tonnes of uranium discovered (28% of the world’s reserves) currently. Its Olympic Dam mine, located about 600 kilometers north of Adelaide, is the the largest single deposit of uranium in the world—and also, interestingly, the fourth largest copper deposit.

Despite this, Australia is only the fourth biggest uranium producer currently, and ranks fifth for all-time uranium production.

CountryShare of Global
Reserves
Uranium Reserves (Tonnes)
🇦🇺 Australia28%1.7M
🇰🇿 Kazakhstan13%815K
🇨🇦 Canada10%589K
🇷🇺 Russia8%481K
🇳🇦 Namibia8%470K
🇿🇦 South Africa5%321K
🇧🇷 Brazil5%311K
🇳🇪 Niger5%277K
🇨🇳 China4%224K
🇲🇳 Mongolia2%145K
🇺🇿 Uzbekistan2%131K
🇺🇦 Ukraine2%107K
🌍 Rest of World9%524K
Total100%6M

Figures are rounded.

Outside the top three, Russia and Namibia both have roughly the same amount of uranium reserves: about 8% each, which works out to roughly 470,000 tonnes.

South Africa, Brazil, and Niger all have 5% each of the world’s total deposits as well.

China completes the top 10, with a 3% share of uranium reserves, or about 224,000 tonnes.

A caveat to this is that current data is based on known uranium reserves that are capable of being mined economically. The total amount of the world’s uranium is not known exactly—and new deposits can be found all the time. In fact the world’s known uranium reserves increased by about 25% in the last decade alone, thanks to better technology that improves exploration efforts.

Meanwhile, not all uranium deposits are equal. For example, in the aforementioned Olympic Dam, uranium is recovered as a byproduct of copper mining occurring at the same site. In South Africa, it emerges as a byproduct during treatment of ores in the gold mining process. Orebodies with high concentrations of two substances can increase margins, as costs can be shared for two different products.

Continue Reading

Subscribe

Popular