Connect with us

Base Metals

The History of North American Cooperation on Aluminum and Steel

Published

on

As the global rhetoric around trade heats up, aluminum and steel are two metals that have been unexpectedly thrust into the international spotlight.

Both metals are getting considerable attention as journalists and pundits analyze how tariffs may impact international markets and trade relations. But in that coverage so far, one thing that may have been missed is the interesting history and context of these metals, especially within the framework of trade in North America.

Aluminum and Steel in North America

Today’s infographic tells the story of an ongoing North American partnership in these goods, and how this cooperation even helped U.S. and Canadian efforts in World War 2, as well as in addressing other issues of national security.

The History of North American Cooperation on Aluminum and Steel

Aluminum and steel are metals that are not only essential for industry to thrive, but they are also needed to build infrastructure and to ensure national security.

Because of the importance of these metals, countries in North America have been cooperating for many decades to guarantee the best possible supply chains for both aluminum and steel.

The History: Aluminum and Steel

Here are some of the major events that involve the two metals, from the perspective of North American trade and cooperation.

1899
The Pittsburgh Reduction Company, later the Aluminum Company of America (Alcoa), begins construction of a power plant and aluminum smelter in Shawinigan Falls, Quebec.

1901
The company produces the first aluminum ever on Canadian soil.

1902
This Canadian division is renamed the Northern Aluminum Company

New Uses & WW1

1903
The Wright brothers use aluminum in their first plane at Kitty Hawk, North Carolina.

1908
The first Model T rolls off the assembly line, and steel is a primary component.

1910
The U.S. and Canadian steel industries surround the Great Lakes region. At this point the U.S., produces more steel than any other country in the world.

1913
The US passes the Underwood Tariff, a general reduction in tariff rates that affected Canadian exporters. Zero or near-zero tariffs were introduced for steel. (The Canadian Encylopedia)

1914
At this point, 80% of American-made cars had aluminum crank and gear cases.

World War I
The Great War breaks out. It’s the first ever “modern war”, and metals become strategically important in a way like never before. For the first three years, the U.S. helps the Allies – including Canada – which is already at war, by providing supplies.

Steel was crucial for ships, railways, shells, submarines and airplanes. Meanwhile, aluminum was used in explosives, ammunition, and machine guns – and the Liberty V12 engine, which powered Allied planes, was 1/3 aluminum.

During this stretch, America produced three times as much steel as Germany and Austria. By the end of the war, military usage of aluminum is sucking up 90% of all North American production.

Interwar Period

1919
After the war, the interruption of European aluminum shipments to North America drives up Northern Aluminum sales to the United States. In 1919, U.S. aluminum imports from Northern Aluminum totals 5,643 tons, while all European producers add up to 2,360 tons.

1925
After aluminum gains post-war acceptance from consumers, Alcoa uses this new momentum to strike a deal to build one of the world’s greatest aluminum complexes in Quebec on the Saguenay River.

These facilities become the base for Northern Aluminum, which changes its name to the Aluminum Company of Canada (Alcan). By 1927, the area includes an entire new company town (Arvida), a 27,000 ton smelter, and a hydro power plant. This complex would eventually become the world’s largest aluminum production site for WWII.

1929
The “Roaring Twenties” saw consumer culture take off, with autos and appliances flying off the shelves. Steel and aluminum demand continues to soar.

World War II

1940
Canada and the U.S. establish the Permanent Joint Board on Defense, still in operation today. Near the same time, the Canadian-American defense industrial alliance, known as the Defense Production Sharing Program, is also established.

1941
Canada and the U.S. agree to coordinate production of war materials to reduce duplication, and to allow each country to specialize, with The Hyde Park Declaration of 1941.

The principles of this declaration recognize North America as a single, integrated defense industrial base.

1942
Canada builds the Bagotville airbase to protect the aluminum complex and hydro plants of the Saguenay region, which were crucial in supplying American and Canadian forces. A Hawker Hurricane squadron is permanently stationed, to protect the area.

1945
The Saguenay facilities were so prolific that Canada supplied 40% of the Allies’ total aluminum production.

“The record proves that in peaceful commerce the combined efforts of our countries can produce outstanding results. Our trade with each other is far greater than that of any other two nations on earth.” – Harry Truman, 33rd U.S. President, 1947

Cold War & North American Integration

1952
The U.S. focuses on Canadian resources after the President’s Materials Policy Commission warns of future shortages of various metals, which could make the U.S. dependent on insecure foreign sources during times of conflict.

1956
Canada and the U.S. sign the Defense Production Sharing Agreement, which aims to maintain a balance in trade for defense products. At this point, Canada relies on the U.S. for military technology – and the U.S. relies on Canada for important military inputs.

1959
The St. Lawrence Seaway opens, providing ocean-going vessels access to Canadian and U.S. ports on the Great Lakes. This facilitates the shipping of iron ore, steel, and aluminum.

1965
The Canada-U.S. Auto Pact allows for the integration of the Canadian and US auto industries in a shared North American market. This paves the way for iron ore, steel, and aluminum trade.

1989
The U.S. and Canada sign a free trade agreement, which eventually gets rolled into NAFTA in 1994.

Modern Aluminum and Steel Trade

2007
U.S. Steel buys the Steel Company of Canada (Stelco) for $1.9 billion

Today
The U.S. and Canada are each other’s best international customer for a variety of goods – including steel and aluminum.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Base Metals

Prove Your Metal: Top 10 Strongest Metals on Earth

There are 91 elements that are defined as metals but not all are the same. Here is a breakdown of the top 10 strongest metals and their applications.

Published

on

Prove Your Metal: Top 10 Strongest Metals on Earth

The use of metals and the advancement of human civilization have gone hand in hand — and throughout the ages, each metal has proved its worth based on its properties and applications.

Today’s visualization from Viking Steel Structures outlines the 10 strongest metals on Earth and their applications.

What are Metals?

Metals are solid materials that are typically hard, shiny, malleable, and ductile, with good electrical and thermal conductivity. But not all metal is equal, which makes their uses as varied as their individual properties and benefits.

The periodic table below presents a simple view of the relationship between metals, nonmetals, and metalloids, which you can easily identify by color.

The Periodic Table

While 91 of the 118 elements of the periodic table are considered to be metals, only a few of them stand out as the strongest.

What Makes a Metal Strong?

The strength of a metal depends on four properties:

  1. Tensile Strength: How well a metal resists being pulled apart
  2. Compressive Strength: How well a material resists being squashed together
  3. Yield Strength: How well a rod or beam of a particular metal resists bending and permanent damage
  4. Impact Strength: The ability to resist shattering upon impact with another object or surface

Here are the top 10 metals based on these properties.

The Top 10 Strongest Metals

RankType of MetalExample UseAtomic WeightMelting Point
#1TungstenMaking bullets and missiles183.84 u3422°C / 6192 °F
#2 SteelConstruction of railroads, roads, other infrastructure and appliancesn/a1371°C / 2500°F
#3ChromiumManufacturing stainless steel51.96 u1907°C / 3465°F,
#4TitaniumIn the aerospace Industry, as a lightweight material with strength47.87 u1668°C / 3032°F
#5IronUsed to make bridges, electricity, pylons, bicycle chains, cutting tools and rifle barrels55.85 u1536°C / 2800°F
#6Vanadium80% of vanadium is alloyed with iron to make steel shock and corrosion resistance50.942 u1910°C / 3470°F
#7LutetiumUsed as catalysts in petroleum production.174.96 u1663 °C / 3025°F
#8ZirconiumUsed in nuclear power stations.91.22 u1850°C / 3.362°F
#9OsmiumAdded to platinum or indium to make them harder.190.2 u3000°C / 5,400°F
#10TantalumUsed as an alloy due to its high melting point and anti-corrosion.180.94 u3,017°C / 5462°F

Out of the Forge and into Tech: Metals for the Future

While these metals help to forge the modern world, there is a new class of metals that are set to create a new future.

Rare Earth elements (REEs) are a group of metals do not rely on their strength, but instead their importance in applications in new technologies, including those used for green energy.

MetalUses
NeodymiumMagnets containing neodymium are used in green technologies such as the manufacture of wind turbines and hybrid cars.
LanthanumUsed in catalytic converters in cars, enabling them to run at high temperatures
CeriumThis element is used in camera and telescope lenses.
PraseodymiumUsed to create strong metals for use in aircraft engines.
GadoliniumUsed in X-ray and MRI scanning systems, and also in television screens.
Yttrium, terbium, europiumMaking televisions and computer screens and other devices that have visual displays.

If the world is going to move towards a more sustainable and efficient future, metals—both tough and smart—are going to be critical. Each one will serve a particular purpose to build the infrastructure and technology for the next generation.

Our ability to deploy technology with the right materials will test the world’s mettle to meet the challenges of tomorrow—so choose wisely.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Base Metals

20 Common Metal Alloys and What They’re Made Of

You can’t find stainless steel, brass, sterling silver, or white gold on the periodic table. Learn about 20 common metal alloys, and what they are made from.

Published

on

Every day, you’re likely to encounter metals that cannot be found anywhere on the periodic table.

You may play a brass instrument while wearing a white gold necklace – or maybe you cook with a cast iron skillet and store your leftovers in a stainless steel refrigerator.

It’s likely that you know these common metal alloys by name, and you can probably even imagine what they look and feel like. But do you know what base metals these alloys are made of, exactly?

Common Metal Alloys

Today’s infographic comes to us from Alan’s Factory Outlet, and it breaks down metal and non-metal components that go into popular metal alloys.

In total, 20 alloys are highlighted, and they range from household names (i.e. bronze, sterling silver) to lesser-known metals that are crucial for industrial purposes (i.e. solder, gunmetal, magnox).

20 Common Metal Alloys and What They

Humans make metal alloys for various reasons.

Some alloys have long-standing historical significance. For example, electrum is a naturally-occurring alloy of gold and silver (with trace amounts of copper) that was used to make the very first metal coins in ancient history.

However, most of the common metal alloys on the above list are actually human inventions that are used to achieve practical purposes. Some were innovated by brilliant metallurgists, while others were discovered by fluke, but they’ve all had an ongoing impact on our species over time.

Alloys with an Impact

The Bronze Age (3,000 BC – 1,200 BC) is an important historical period that is rightfully named after one game-changing development: the ability to use bronze. This alloy, made from copper and tin, was extremely useful to our ancestors because it is much stronger and harder than its component metals.

Steel is another great example of an alloy that has changed the world. It is one of the most important and widely-used metals today. Without steel, modern civilization (skyscrapers, bridges, etc.) simply wouldn’t be possible.

While nobody knows exactly who invented steel, the alloy has a widely-known cousin that was likely invented in somewhat accidental circumstances.

In 1912, English metallurgist Harry Brearley had been tasked with finding a more erosion-resistant steel for a small arms manufacturer, trying many variations of alloys with none seeming to be suitable. However, in his scrap metal heap – where almost all of the metals he tried were rusting – there was one gun barrel that remained astonishingly untouched.

The metal alloy – now known to the world as stainless steel – was a step forward in creating a corrosion-resistant steel that is now used in many applications ranging from medical uses to heavy industry.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Standard Lithium Company Spotlight

Subscribe

Join the 130,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular