Connect with us

Sponsored

Five Business Priorities for the Future of Work

Published

on

View the full-size version of this infographic.
Five Business Priorities for the Future of Work 1200px

Five Business Priorities for the Future of Work

View a high resolution version of this graphic by clicking here.

COVID-19 is ushering in an entirely different future in terms of working life. However, forces such as digitalization have been altering the workforce long before the pandemic.

OECD research suggests that 31% of jobs could be radically transformed as a result of automation. At the same time, specialized jobs are being created elsewhere. These big picture trends mean that many organizations are already preparing for a now-accelerated future.

This infographic from PwC identifies five priorities that can help provide a path forward for a company’s Future of Work plan—strengthened by responses from an ongoing survey of U.S. CFOs on their workforce strategy.

1. Business Strategy

According to the survey, 72% of U.S. chief financial officers (CFOs) say they that responding to COVID-19 with better resilience and agility will be a key factor to their company’s improvement in the long run.

Factor% Respondents
Work flexibility73%
Better resilience and agility72%
Technology investments56%
New ways to serve customers53%
Leaner inspirations50%
Community and societal engagement27%

Flexible ways of working, such as telecommuting or shorter workweeks, also can help improve productivity and work-life balance, further spurring this shift. Companies should avoid ignoring the needs of employees and invest in creating a thriving work environment.

2. Talent Planning

Hiring to accomplish workforce goals alone is not enough. Companies should think about three steps when building a strong talent pool:

  • Recruit well
    Assess your company’s values and mission, and keep an eye on diversity and inclusion while hiring. For example, it’s been proven that gender diversity initiatives are good for the bottom line, improving outcomes and increasing profits and productivity.
    • Retain talent
      At present, 55% of CFOs don’t feel very confident in their company’s ability to retain critical talent.
      Organizations should avoid hiring with a short-term mindset. Instead, focus on building employees’ skills, with emphasis on upskilling in digital tools and software.
      • Stay adaptable
        Businesses are increasingly leveraging the gig economy, as alternative models grow in popularity.

      3. Learning & Innovation

      Despite incoming automation threats, six in ten adults still lack basic information and communications skills. The good news? In the future, both digital and human skills will be in high demand.

      To keep up with these trends, upskilling—ranging from digital literacy to critical thinking—will be of the essence. It requires both an individual and an organizational commitment to create a culture of learning in the workforce.

      Currently, only 45% of CFOs feel very confident in their company’s ability to build the necessary skills for the future.

      4. Employee Experience

      These days, employees rarely approach their work as only a “Nine to Five” job. Instead, they seek meaningful work, relationships, and experiences—PwC notes that one in three workers would be willing to consider lower pay for a more fulfilling job.

      To that effect, there is a renewed spotlight on supporting individual needs and well-being. There are tangible benefits to an engaged workforce:

      • 41% reduction in absenteeism
      • 24-59% less turnover
      • 20% increase in sales
      • 17% increase in productivity

      For future success, organizations should build a holistic view of the employee experience. To that end, 49% of CFOs do not feel confident in their company’s ability to manage employee well-being and morale.

      5. Work Environment

      Flexible work is an essential component of the future of business, and it seems that it’s here to stay. 72% of CFOs believe that work flexibility will make their company better in the long run.

      This drives home the urgent need to reconfigure the traditional office and bolster remote work capabilities—enabling employees to work from wherever they want, whenever they want.

      It’s clear the Future of Work discussion isn’t happening in a bubble—these alternative workforce needs are simply speeding up the inevitable transition.

      Many companies only focus on two or three of the above priorities, but aligning all five will be crucial for the future of work.

      Note: All statistics are from the same PwC U.S. CFO Pulse survey unless otherwise stated.
      PwC surveyed 330 US CFOs and finance leaders between June 8-11, 2020. 88% percent of the respondents were from public and private companies in these top five sectors: health industries (9%), consumer markets (13%), financial services (23%), industrial products (23%), and technology, media and telecommunications (20%). Twenty-nine percent of respondents were from Fortune 1000 companies. The PwC CFO Pulse Survey is conducted on a periodic basis to track changing sentiment and priorities. Now in its sixth installment, the inaugural survey was conducted March 9-11, 2020.

      Subscribe to Visual Capitalist

      Thank you!
      Given email address is already subscribed, thank you!
      Please provide a valid email address.
      Please complete the CAPTCHA.
      Oops. Something went wrong. Please try again later.

Comments

Sponsored

Copper: Critical Today, Tomorrow, and Forever

We use copper everywhere in our daily lives. This infographic highlights the uses of copper and its applications in various industries.

Published

on

uses of copper in transportation

As we go about checking our phones for the latest updates, watching our favorite television shows, or even cooking our daily meals, we often don’t think about the uses of copper and other metals that fuel, power, and drive our modern lives.

From electrical appliances to jewelry, healthcare, and transport—we use copper everywhere–and its applications are only growing as the world moves towards sustainable technologies.

The Material for a Modern Economy

Today’s infographic comes to us from Trilogy Metals and shines a light on the varied uses of copper and the important role it plays in enabling a cleaner, greener future.

Uses of copper infographic

Trilogy Metals

Understanding the Role of Copper Today

Modern economies rely on infrastructure, transportation, healthcare, construction, and energy utilities. Copper is critical to each one of these industries—supporting economic growth, urbanization, higher living standards, and a sustainable future.

How does copper do all this?

The element has five key properties that make it an integral part of the modern economy:

  1. High conductivity
  2. Pressure resistance
  3. Corrosion resistance
  4. Antimicrobial properties
  5. Ductility

Let’s look at how these properties factor into major uses of the red metal today.

Copper Builds: Construction and Infrastructure

The construction and infrastructure industries use more than 40% of all copper produced. Copper’s properties make it the optimal choice for various construction activities:

  • Roofing: Copper’s wind resistance, aesthetic appeal, and sustainability make it a great roofing material.
  • Tubing: Residential heating and water systems use copper tubes for copper’s high thermal conductivity and antimicrobial properties.
  • Electric grids: The generation, transmission, distribution, and consumption of electricity all rely on copper wiring for its electrical conductivity and malleability.

In addition, copper lightning conductors are the longstanding protectors of buildings when lightning strikes—a further testament to its electrical properties.

Despite its widespread usage, copper remains highly affordable. Without copper, powering, wiring, and protecting our homes would prove costly and difficult.

Copper Moves: Transportation

From gas-powered cars and electrical vehicles (EVs) to trains and airplanes, copper is an essential part of our daily commute.

Here are some interesting uses of copper in transportation:

Means of TransportationWhere Copper is UsedCopper's Role
AirplanesWiring and equipment
  • A single Boeing 747-200 Jet contains 632,000 feet of copper wire.

  • Copper is used to make busbars and lock wires for aircraft.

  • Landing gear parts and bearings make use of copper alloys to withstand high pressures.
Electric Vehicles (EVs)Wiring, voltage transmission, and motors
  • Electric vehicles can contain up to 368 kilograms (813 lbs) of copper, depending on their size and type.

  • EVs rely on copper’s electrical conductivity in batteries, wiring systems, and charging stations.

  • High-speed trains use copper alloys to maintain electrical contact at high speeds.
Cars and other modesWiring, radiators, brake-tubing, and motors
  • The average luxury car contains 1.6 km (5,249 feet) of copper.

  • Using copper in motors increases efficiency, resulting in higher power generation and longer distances.

  • Brake-tubing systems utilize copper’s anti-corrosive and pressure-resistant properties.

  • Copper makes heat radiators smaller, lighter, and more affordable.

As the global population grows, more transportation services will be required—and copper will continue to play a crucial role.

Copper Cares: Healthcare and Hospitals

Did you know that copper can kill 99.9% of E.Coli within two hours of exposure?

This, alongside the ongoing COVID-19 pandemic, makes copper’s antimicrobial properties and healthcare applications more important than ever.

Copper helps us lead healthier lives in many ways.

Where Copper is FoundCopper's Role
HospitalsCopper’s ability to kill bacteria improves the safety of high-touch surfaces such as doorknobs and bed handles.
Daily DietsCopper is vital to the normal development of the brain, and adults require 1-2mg of copper in their daily diets.

More than 500 antimicrobial copper alloys are registered with the U.S. Environmental Protection Agency. With further research, copper could play an even bigger role in healthcare.

Copper Strengthens: Jewelry and Coinage

Copper’s durability and aesthetic appeal make it ideal for usage in jewelry and coinage, where it’s present in significant quantities.

For instance, 18K gold jewelry typically contains 75% gold, 15% silver, and 10% copper. Not only does copper strengthen gold and silver jewelry, but its alloys (brass and bronze) are also commonly used to make jewelry items that are affordable and appealing.

Furthermore, many of the coins we use are made from copper and its alloys. To be precise, two properties of copper are key to producing durable and safe coins:

  1. Corrosion Resistance: Copper-nickel alloy coins do not tarnish.
  2. Electrical Conductivity: Copper-nickel coins have specific electronic signatures that help prevent fraud in vending and coin-handling machines.

Copper Comforts: Homes and Households

The average single-family home contains around 200 kilograms (439 lbs) of copper.

Here’s how it breaks down, along with the amount of copper in general appliances:

Appliance/MaterialAmount of Copper Contained (kg)
Building Wire88.5
Plumbing tubes and fittings68.5
Air conditioners 23.5
Heat Pumps21.7
Built-in appliances and other hardware21.0
Dishwashers2.2
Refrigerators2.1

But that’s not all.

In addition to home appliances, copper also plays an important role in objects that we use on a daily basis. According to BBC, a typical iPhone contains 15 grams of copper on average—approximately 10% of the phone’s weight.

Copper is an integral part of the modern economy today. Its unique properties enable urbanization and economic development at low costs—and the story doesn’t end here.

Why Copper Tomorrow?

As the world transitions towards a cleaner energy mix, copper will be an essential material in empowering a more sustainable future.

Copper in Renewable Energy

According to McKinsey, a whopping 73% of global power generation will come from renewable energy sources by 2050—and copper has a significant role to play in this transition.

Solar and wind energy farms are heavily dependent on copper. Cabling and heat-exchange in solar and wind farms are the primary applications of copper in renewable energy generation.

For starters, wind farms can contain anywhere between 4 to 15 million pounds of copper. Moreover, solar photovoltaic farms require 9,000 pounds of copper per megawatt of energy. To put that into context, India’s solar power generation capacity is 31,696 megawatts—which alone would require about 322 million pounds of copper.

Copper in Electric Vehicles

As the standard benchmark for electrical conductivity, copper is indispensable for EVs. The growing EV market could bolster copper demand in the near future.

Copper is used in EV batteries, coils, wiring, and charging stations. As per current growth projections, by 2030, more than 250,000 tonnes of copper will be needed as part of the windings in electric traction motors in on-road EVs.

The transition to clean energy, coupled with urbanization and economic development, implies that copper is critical for the future.

However, copper’s importance to the future is a double-edged sword and raises concerns about the sustainability of its supply—will there be enough?

Copper Forever: Sustainable Material

From the 5.8 trillion pounds of known copper resources, only 12% have been mined throughout history—and thanks to copper’s recyclability, almost all of that is still in circulation.

Not only does recycled copper offer the same quality and benefits as newly mined copper, but it also saves a massive 40 million tonnes of CO2 emissions annually. Additionally, copper recycling uses 80-90% less energy than mining, and a total of 8.5 million tonnes of the red metal are produced from recycled scrap each year.

Copper’s recyclability makes it reusable for years to come, complementing the path to sustainable development.

Copper: Critical Today, Tomorrow, and Forever

The exceptional properties of copper allow for widespread applications, which continue to grow as the world shifts towards clean energy.

And since we need copper for all aspects of life, its demand will always persist.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Sponsored

Lithium-Cobalt Batteries: Powering the Electric Vehicle Revolution

Which minerals are used to power an electric vehicle? This infographic highlights the role of lithium and cobalt in EV battery technology.

Published

on

Lithium-cobalt batteries

Lithium-Cobalt Batteries: Powering the EV Revolution

Countries across the globe are working towards a greener future and electric vehicles (EVs) are a key piece of the puzzle.

In fact, the EV revolution is well underway, rising from 17,000 electric cars in 2010 to 7.2 million in 2019—a 423x increase in less than a decade. At the same time, we often take for granted the variety of materials that make modern technology work. Going electric requires the use of strategic minerals, especially cobalt.

Today’s infographic comes to us from Fuse Cobalt and looks into how the cobalt in lithium batteries makes the difference for powerful and reliable battery technology.

Edging Over the Competition: The Lithium-Cobalt Combination

There are five primary lithium battery combinations for EVs, each with pros and cons:

  • Lithium Nickel Cobalt Aluminum (NCA)
  • Lithium Nickel Manganese Cobalt (NMC)
  • Lithium Manganese Oxide (LMO)
  • Lithium Titanate (LTO)
  • Lithium Iron Phosphate (LFP)

From the plethora of lithium-ion battery compositions, EV manufacturers prefer the lithium-cobalt combination. As a result, NCA and NMC batteries are the most prevalent in EVs.

NCA batteriesNMC batteries
Offer high specific energy and power
Allow EVs to travel farther
Offer a similar caliber of performance
Use less cobalt, making them less expensive
More prone to overheating
Use more cobalt, making them more expensive
Higher overall safety
Commonly found in Tesla EVsCommonly found in Nissan, Chevrolet, and BMW EVs

The low energy density and power of the other batteries make them impractical for long-range EVs—and it’s partially due to the lack of cobalt.

Why Lithium-Cobalt?

When it comes to powering EVs, lithium-cobalt batteries are unmatched. Specific properties of cobalt make them stand out from the rest:

  • High energy density
  • Thermal stability
  • High specific power
  • Low self-discharge rate
  • Low weight
  • Recyclability

Not only do lithium-cobalt batteries allow EVs to travel farther, but they also improve safety and sustainability.

Cobalt: The Stable Battery Element

Cobalt’s high energy density allows batteries to pack more energy in smaller spaces, making them lightweight and powerful at the same time. In addition, its ability to withstand high temperatures increases the safety and reliability of EVs.

Furthermore, cobalt increases the longevity of batteries and remains highly recyclable, promoting a more sustainable battery supply chain.

Despite its advantages, EV manufacturers are making efforts to reduce the cobalt content of their batteries for various reasons associated with its supply chain:

  • Cobalt is a by-product of nickel and copper mining, which makes it harder to obtain.
  • Cobalt is expensive, at US$33,000/tonne—more than twice the price of nickel.
  • The general public associates cobalt mining in the Congo with child labor, tough conditions, and corruption.

Although cobalt may be associated with unethical mining practices, it still remains essential to EV manufacturers—as demonstrated by Tesla’s agreement to buy 6,000 tonnes of cobalt annually from mining giant Glencore.

Combating Cobalt’s Ethical Concerns

EV manufacturers and miners have joined forces with organizations that are making efforts to alleviate the ethical issues associated with cobalt mining. These include:

  • Fair Cobalt Alliance
  • Responsible Minerals Initiative
  • Responsible Cobalt Initiative
  • Clean Cobalt Initiative

As these initiatives progress, we may see a future with ethically mined cobalt in EV batteries, including cobalt mined in more jurisdictions outside of the DRC.

For the time being, it’s interesting to see how lithium-cobalt batteries power up an EV.

Breaking Down a Lithium-Cobalt Battery

Lithium-Cobalt batteries have three key components:

  • The cathode is an electrode that carries a positive charge, and is made of lithium metal oxide combinations of cobalt, nickel, manganese, iron, and aluminum.
  • The anode is an electrode that carries a negative charge, usually made of graphite.
  • The electrolyte is a lithium salt in liquid or gel form, and allows the ions to flow from the cathode to the anode (and vice versa).

How it Works

When the battery is charged, lithium ions flow via the electrolyte from the cathode to the anode, where they are stored for usage. Simultaneously, electrons pass through an external circuit and are collected in the anode through a negative current collector.

When the battery is generating an electric current (i.e. discharging), the ions flow via the electrolyte from the anode to the cathode, and the electrons reverse direction along the external circuit, powering up the EV.

The composition of the cathode largely determines battery performance. For EV batteries, this is where the lithium-cobalt combination plays a crucial role.

The EV market could experience colossal growth over the next decade, but it faces several roadblocks. At present, EV charging infrastructure is expensive and not as convenient as the local gas station—and lithium-cobalt batteries could help overcome this obstacle.

Battery Storage: The Future of EV Charging Stations?

There are the two ways to charge an electric vehicle battery:

  1. Alternating Current (AC) chargers provide an alternating current, which periodically reverses direction.
  2. Direct Current (DC) fast chargers provide direct current that moves only in one direction.

But there’s a catch.

EV batteries can only store energy in the form of direct current. To charge an EV battery, the onboard charger must convert the alternating current from AC chargers into direct current, increasing charging times substantially.

Today, EV chargers are available in three different types:

Type of ChargerDescriptionMax energy drawn per hourCharge time
(60-kWH EV battery)
Alternating Current (AC) Level 1Charge via a 120-volt AC plug
1.4kW2,400 minutes
Alternating Current (AC) Level 2Charge via a 240-volt AC plug7.2kW500 minutes
Direct Current (DC)Charge EVs rapidly, but are more expensive to install and use50-350kWRange between 10-75 minutes

Meanwhile, several roadblocks still discourage EV buyers, from the lack of charging infrastructure to long charging times.

Stationary battery storage could be the solution.

Stationary Battery Storage: Solving the EV Charging Enigma

Charged batteries can provide EVs with direct current without drawing power from the grid during times of high demand. This can significantly reduce the demand charges of electricity, which account for a large portion of a charging station’s electricity bill.

The highest rate of electricity usage at a particular time determines the demand charges, separate from the cost of actual energy consumed. In other words, demand charges can be astronomical at times when multiple vehicles are charged via power from the grid.

Stationary battery storage systems could be charged from the grid at times of low demand, and used to provide direct current to vehicles during times of high demand.

As a result, this could dramatically reduce charging times as well as the cost of electricity.

Enabling Stationary Battery Storage

Developing stationary battery storage systems on a large scale is expensive. Lithium-cobalt batteries could mitigate these costs through their recyclability.

Unless damaged beyond repair, recycling companies can refurbish lithium-cobalt battery packs for a second life as stationary storage systems.

Re-using batteries promotes a circular economy and reduces waste, pollution, and costs. Not only would this improve charging infrastructure, but it would also create a more sustainable supply chain for EV batteries.

Lithium-Cobalt Batteries: Here to Stay

Despite efforts to reduce the cobalt contents in batteries, the lithium-cobalt combination remains the optimal technology for EV batteries.

Growth is imminent in the EV market, and lithium-cobalt batteries could take center stage in improving both vehicle performance, and charging infrastructure.

Subscribe to Visual Capitalist

Continue Reading

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular