Connect with us

Mining

Extraordinary Raw Materials in a Tesla Model S

Published

on

The Extraordinary Raw Materials in a Tesla Model S

Presented by: Red Cloud Klondike Strike (Equity crowdfunding in mining)

The Tesla Model S is the world’s most-wanted electric car, with 100,000 units already sold as of December 2015.

Critics have lauded the car for its impressive safety rating, range, and design. However, it is also worth considering that it is the incredible raw materials that go into the Tesla Model S that help to make all of these things possible.

Here’s what’s in a Tesla Model S:

Body and Chassis

Bauxite: The Tesla Model S body and chassis are built almost entirely from aluminum, which comes from bauxite ore. Aluminum is lightweight, which helps to maximize the range of the battery beyond that of other EVs. The total amount of aluminum used in the car is 410 lbs (190 kg).

Boron steel: High-strength boron steel is used to reinforce the aluminum at critical safety points. Boron steel is made from iron, boron, coking coal, and other additives.

Titanium: The underbody of the Tesla Model S is made from ultra high-strength titanium, which protects the battery from nearly any roadside force or piercing.

Interior

Rare Earth Metals: While Tesla engines and batteries do not use rare earths, most high-end car speakers and other electronics use rare earth elements such as neodymium magnets.

Plastic: Most plastics are made from petrochemicals.

Leather: Leather is derived from animal skin, mainly cowhides .

Silicon: Glass windows and other features are made from silicon.

Carbon fiber and copper wire are also used within the interior for various components.

Wheels

Bauxite: Aluminum alloy wheels are also made from bauxite ore.

Rubber: Natural rubber comes from rubber trees, but today 70% of US rubber is synthetic, made from petrochemicals.

Induction Engine:

Copper: Tesla’s high-performance copper rotor motor delivers 300 horsepower and weighs 100 lbs (45.4 kg).

Steel: The stationary piece of the engine, the stator, is made from both copper and steel.

Battery:

The Tesla battery pack weighs 1,200 lbs (540 kg), which is equal to about 26% of the car’s total weight. This puts the car’s center of gravity a mere 44.5 centimeters off the ground, giving the car unprecedented stability.

The battery itself contains 7,104 lithium-ion battery cells. Here’s what’s in each cell:

Cathode: The Tesla Model S battery cathode uses an NCA formulation with the approximate ratio: 80% nickel, 15% cobalt, and 5% aluminum. Small amounts of lithium are also used in the cathode.

Anode: The negative terminal uses natural or synthetic graphite to hold lithium ions. Small amounts of silicon are also likely used in the anode as well.

Electrolyte: The electrolyte is made of a lithium salt.

Copper and/or aluminum foil is also used in the battery as well.

Note: all numbers above are based on the 85 kWh battery model.

Click for Comments

Copper

Brass Rods: The Secure Choice

This graphic shows why brass rods are the secure choice for precision-machined and forged parts.

Published

on

Teaser of bar chart and pie chart highlighting three ways brass rods empower manufacturers in the competitive market for precision-machined and forged products.

Published

on

The following content is sponsored by Copper Development Association

Brass Rods: The Secure Choice

The unique combination of machinability and recyclability makes brass rods the secure choice for manufacturers seeking future-proof raw material solutions.

This infographic, from the Copper Development Association, shows three ways brass rods give manufacturers greater control and a license to grow in the competitive market for precision-machined and forged products.

Future-Proof Investments in New Machine Tools

A material’s machinability directly impacts machine throughput, which typically has the largest impact on machine shop profitability.

The high-speed machining capabilities of brass rods maximize machine tool performance, allowing manufacturers to run the material faster and longer without sacrificing tool life, chip formation, or surface quality.

The high machining efficiency of brass leads to reduced per-part costs, quicker return on investment (ROI) for new machine tools, and expanded production capacity for new projects.

Supply Security Through Closed Loop Recycling

Brass, like its parent element copper, can be infinitely recycled. 

In 2022, brass- and wire-rod mills accounted for the majority of the 830,000 tonnes of copper recycled from scrap in the United States.

Given that scrap ratios for machined parts typically range from 60-70% by weight, producing mills benefit from a secure and steady supply of clean scrap returned directly from customers, which is recycled to create new brass rods.

The high residual value of brass scrap creates a strong recycling incentive. Scrap buy back programs give manufacturers greater control over raw material net costs as scrap value is often factored into supplier purchase agreements.

Next Generation Alloys for a Lead-Free Future

Increasingly stringent global regulations continue to pressure manufacturers to minimize the use of materials containing trace amounts of lead and other harmful impurities.

The latest generation of brass-rod alloys is engineered to meet the most demanding criteria for lead leaching in drinking water and other sensitive applications.

Seven brass-rod alloys passed rigorous testing to become the only ‘Acceptable Materials’ against lower lead leaching criteria recently adopted in the national U.S. drinking water quality standard, NSF 61.

Visual Capitalist Logo

Learn more about the advantages of brass rods solutions.

Click for Comments

You may also like

HIVE Digital Technologies

Subscribe

Continue Reading
Visualizing Asia's Water Dilemma

Subscribe

Popular