Connect with us

Misc

Every Visible Star in the Night Sky, in One Map

Published

on

View the full-size version of this infographic.

Visible Stars in the Night Sky Map

Every Visible Star in the Night Sky, in One Map

View the high resolution version of this incredible map by clicking here.

The stars have fascinated humanity since the beginning of civilization, from using them to track the different seasons, to relying on them to navigate thousands of miles on the open ocean.

Today, travelers trek to the ends of the Earth to catch a glimpse of the Milky Way, untouched by light pollution. However, if you’re in the city and the heavens align on a clear night, you might still be able to spot somewhere between 2,500 to 5,000 stars scattered across your field of vision.

This stunning star map was created by Eleanor Lutz, under the Reddit pseudonym /hellofromthemoon, and is a throwback to all the stars and celestial bodies that could be seen by the naked eye on Near Year’s Day in 2000.

Star Light, Star Bright

Stars have served as a basis for navigation for thousands of years. Polaris, also dubbed the North Star in the Ursa Minor constellation, is arguably one of the most influential, even though it sits 434 light years away.

Because of its relative location to the Earth’s axis, Polaris is reliably found in the same spot throughout the year—on this star map, it can be spotted in the top right corner. The Polynesian people famously followed the path of the North Star, along with wave currents, in all their way-finding journeys.

Interestingly, Polaris’ dependability is why it is commonly mistaken as the brightest star, but Sirius actually takes that crown—find it below the Gemini constellation, at the 7HR latitude and -20° longitude coordinates on the visualization. Located in the Canis Majoris constellation, Sirius burns bluish-white, and is one of the hottest objects in the universe with a surface temperature of 17,400°F (9,667°C). Sirius is nearly 40 times brighter than our Sun.

The Egyptians associated Sirius with the goddess Isis, and used its location to predict the annual flooding of the Nile. This also isn’t the only way humans have used visible stars to “predict” the future, as evidenced by the ancient practice of astrology.

Seeking Answers in the Stars

In the star map above, the orange lines denote the twelve signs of the Zodiac, each found roughly along the same band from 10° to -30° longitude. These Zodiac alignments, along with planetary movements, form the basis of astrology, which has been practiced across cultures to predict significant events. While the scientific method has widely demonstrated that astrology doesn’t hold much validity, many people still believe in it today.

The red lines on the visualization signify the constellations officially recognized by the International Astronomical Union (IAU) in 1922. Its ancient Greek origins are recorded on the same map as the blue lines, from which the modern constellation boundaries are based. Here’s a deeper dive into all 88 IAU constellations:

ConstellationEnglish NameCategoryBrightest star
AndromedaChained Maiden/ PrincessCreature/ CharacterAlpheratz
AntliaAir PumpObjectα Antliae
Apus Bird of ParadiseAnimalα Apodis
♒ AquariusWater BearerCreature/ CharacterSadalsuud
AquilaEagleAnimalAltair
AraAltarObjectβ Arae
♈ AriesRamAnimalHamal
AurigaCharioteerCreature/ CharacterCapella
BoötesHerdsmanCreature/ CharacterArcturus
CaelumEngraving ToolObjectα Caeli
CamelopardalisGiraffeAnimalβ Camelopardalis
♋ CancerCrabAnimalTarf
Canes VenaticiHunting DogsAnimalCor Caroli
Canis MajorGreat DogAnimalSirius
Canis MinorLesser DogAnimalProcyon
♑ CapricornusSea GoatCreature/ CharacterDeneb Algedi
CarinaKeelObjectCanopus
CassiopeiaSeated QueenCreature/ CharacterSchedar
CentaurusCentaurCreature/ CharacterRigil Kentaurus
CepheusKingCreature/ CharacterAlderamin
CetusSea MonsterCreature/ CharacterDiphda
ChamaeleonChameleonAnimalα Chamaeleontis
CircinusCompassObjectα Circini
ColumbaDoveAnimalPhact
Coma BerenicesBernice's HairCreature/ Characterβ Comae Berenices
Corona AustralisSouthern CrownObjectMeridiana
Corona BorealisNorthern CrownObjectAlphecca
CorvusCrowAnimalGienah
CraterCupObjectδ Crateris
CruxSouthern CrossObjectAcrux
CygnusSwanAnimalDeneb
DelphinusDolphinAnimalRotanev
DoradoSwordfishAnimalα Doradus
DracoDragonCreature/ CharacterEltanin
EquuleusLittle HorseAnimalKitalpha
EridanusRiverObjectAchernar
FornaxFurnaceObjectDalim
♊ GeminiTwinsCreature/ CharacterPollux
GrusCraneAnimalAlnair
HerculesHerculesCreature/ CharacterKornephoros
HorologiumPendulum ClockObjectα Horologii
HydraFemale Water SnakeCreature/ CharacterAlphard
HydrusMale Water SnakeCreature/ Characterβ Hydri
IndusIndianCreature/ Characterα Indi
LacertaLizardAnimalα Lacertae
♌ LeoLionAnimalPraecipua
Leo MinorLesser LionAnimalRegulus
LepusHareAnimalArneb
LibraScalesObjectZubeneschamali
LupusWolfAnimalα Lupi
LynxLynxAnimalα Lyncis
LyraLyreObjectVega
MensaTable MountainObjectα Mensae
MicroscopiumMicroscopeObjectγ Microscopii
MonocerosUnicornCreature/ Characterβ Monocerotis
MuscaFlyAnimalα Muscae
NormaCarpenter's SquareObjectγ2 Normae
OctansOctantObjectν Octantis
OphiuchusSerpent BearerCreature/ CharacterRasalhague
OrionHunterCreature/ CharacterRigel
PavoPeacockAnimalPeacock
PegasusWinged HorseCreature/ CharacterEnif
PerseusHeroCreature/ CharacterMirfak
PhoenixPhoenixCreature/ CharacterAnkaa
PictorPainter's EaselObjectα Pictoris
♓ PiscesFishesAnimalAlpherg
Piscis AustrinusSouthern FishCreature/ CharacterFomalhaut
PuppisSternObjectNaos
PyxisMariner's CompassObjectα Pyxidis
ReticulumReticle (Eyepiece)Objectα Reticuli
SagittaArrowObjectγ Sagittae
♐ SagittariusArcherCreature/ CharacterKaus Australis
♏ ScorpiusScorpionAnimalAntares
SculptorSculptorCreature/ Characterα Sculptoris
ScutumShieldObjectα Scuti
SerpensSerpentAnimalUnukalhai
SextansSextantObjectα Sextantis
♉ TaurusBullAnimalAldebaran
TelescopiumTelescopeObjectα Telescopii
TriangulumTriangleObjectAtria
Triangulum AustraleSouthern TriangleObjectβ Trianguli
TucanaToucanAnimalα Tucanae
Ursa MajorGreat BearAnimalAlioth
Ursa MinorLittle BearAnimalPolaris
VelaSailsObjectγ2 Velorum
♍ VirgoMaidenCreature/ CharacterSpica
VolansFlying FishAnimalβ Volantis
VulpeculaFoxAnimalAnser

(Source: International Astronomical Union)

Into the Depths of Deep Space

The quirk of naming stars after flora and fauna doesn’t end there. Our night sky also reveals visible galaxies, nebulae, and clusters far, far away—but they’re named after familiar birds, natural objects, and mythical creatures. See if you can find some of these interesting names:

  • Open Cluster: Wild Duck Cluster
  • Open Cluster: Eagle Nebula
  • Open Cluster: Beehive Cluster
  • Open Cluster: Butterfly Cluster
  • Emission Nebula: North American
  • Emission Nebula: Trifid Nebula
  • Emission Nebula: Lagoon Nebula
  • Emission Nebula: Orion Nebula
  • Open Cluster with Emission Nebula: Swan Nebula
  • Open Cluster with Emission Nebula: Christmas Tree Cluster
  • Open Cluster with Emission Nebula: Rosette Nebula
  • Globular Cluster: Hercules Cluster

There’s an interesting concentration of unnamed open and globular clusters just above the Sagittarius constellation, between 18-20HR latitude and -20° to -30° longitude. Another one can be seen next to Cassiopeia, just below Polaris between 1HR-3HR latitude, at 60° longitude. The only two visible spiral galaxies, Andromeda and Pinwheel, are located close between 0-2HR latitude and 30°-40° longitude.

The Relentless Passage of Time

We now know that the night sky isn’t as static as people used to believe. Although it’s Earth’s major pole star today, Polaris was in fact off-kilter by roughly 8° a few thousand years ago. Our ancestors saw the twin northern pole stars, Kochab and Pherkad, where Polaris is now.

This difference is due to the Earth’s natural axial tilt. Eight degrees may not seem like much, but because of this angle, the constellations we gaze at today are the same, yet completely different from the ones our ancestors looked up at.

If you liked exploring this star map, be sure to check out the geology of Mars from the same designer.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Misc

The 44 Closest Stars and How They Compare to our Sun

This graphic visualizes the 44 closest stars, revealing key facts such as distance from Earth, brightness, and whether potential planets are in orbit.

Published

on

44 closest stars

44 Closest Stars and How They Compare to our Sun

Humans have been fascinated by the stars in the night sky since the dawn of time.

We’ve been decoding the mysteries of celestial bodies for many centuries, but it is only in the last 200 years or so that we’ve been able to glean more detailed information on the lights that dot the night sky. Friedrich Bessel’s method of stellar parallax was a breakthrough in accurately measuring the positions of stars, and opened new doors in the effort to map our universe. Today, high-powered telescopes offer even more granular data on our cosmic neighborhood.

The infographic above, from Alan’s Factory Outlet, categorizes the 44 closest stars to Earth, examining the size, luminosity, constellations, systems, and potential planets of each star.

Our Nearest Stellar Neighbors

Our closest neighboring stars are all part of the same solar system: Alpha Centauri. This triple star system – consisting of Proxima Centauri, Alpha Centauri A, and Alpha Centauri B – attracts a lot of interest because it hosts planets, including one that may be similar to Earth.

The planet, Proxima Centauri b, is a lot closer to its star than Earth is to the Sun. However, because Proxima Centauri is a smaller and cooler red dwarf type star, the planet’s orbit is within the habitable zone. It’s thought that Proxima Centauri b receives approximately the same amount of solar energy as Earth does from our Sun.

Here’s a full list of the 44 of the closest stars to Earth:

Star NameDistance (light years)MoE
Sun0.000016±0.0011
Proxima Centauri4.37±0.0068
α Centauri A4.37±0.0068
α Centauri B4.37±0.0068
Barnard's Star5.96±0.0032
Wolf 3597.86±0.031
Lalande 211858.31±0.014
Sirius A8.66±0.010
Sirius B8.66±0.010
Luyten 726-8 A8.79±0.012
Luyten 726-8 B8.79±0.012
Ross 1549.70±0.0019
Ross 24810.29±0.0041
Epsilon Eridani10.45±0.016
Lacaille 935210.72±0.0016
Ross 12811.01±0.0026
EZ Aquarii A11.11±0.034
61 Cygni A11.40±0.0012
61 Cygni B11.40±0.0012
Procyon A11.40±0.032
Procyon B11.40±0.032
Struve 2398 A11.49±0.0012
Struve 2398 B11.49±0.0012
Groombridge 34 A11.62±0.0008
Groombridge 34 B11.62±0.0008
DX Cancri11.68±0.0056
Tau Ceti11.75±0.022
Epsilon Indi11.87±0.011
Gliese 106111.98±0.0029
YZ Ceti12.11±0.0035
Luyten's Star12.20±0.036
Teegarden's Star12.50±0.013
SCR 1845-635713.05±0.008
Kapteyn's Star12.83±0.0013
Lacaille 876012.95±0.0029
Kruger 60 A13.07±0.0052
Kruger 60 B13.07±0.0052
Wolf 106114.05±0.0038
Wolf 424 A14.05±0.26
Van Maanen's star14.07±0.0023
Gliese 114.17±0.0037
TZ Arietis14.58±0.0070
Gliese 67414.84±0.0033
Gliese 68714.84±0.0022

Even though we see many of these stars in the night sky, humans aren’t likely to see them in person any time soon. To put these vast distances into perspective, if the Voyager spacecraft were to travel to Proxima Centauri, it would take over 73,000 years to finally arrive.

The Brightest Stars in the Sky

The closest stars aren’t necessarily the ones most visible to us here on Earth. Here are the top 10 stars in terms of visual brightness from Earth:

RankProper nameConstellationVisual magnitude (mV)Distance (light years)
1SunN/A−26.740.000016
2SiriusCanis Major−1.468.6
3CanopusCarina−0.74310.0
4Rigil Kentaurus & TolimanCentaurus−0.27 (0.01 + 1.33)4.4
5ArcturusBoötes−0.0537.0
6VegaLyra0.03 (−0.02–0.07var)25.0
7CapellaAuriga0.08 (0.03–0.16var)43.0
8RigelOrion0.13 (0.05–0.18var)860.0
9ProcyonCanis Minor0.3411.0
10AchernarEridanus0.46 (0.40–0.46var)139.0

Excluding our Sun, the brightest star visible from Earth is Sirius, or the Dog Star. Sirius, which is about 25 times more luminous than the sun, visually punctuates the constellation Canis Major.

Filling in the Gaps

The next step in learning more about our surroundings in the cosmos will be seeing which of the stars listed above have planets orbiting them. So far, the 44 stars in the infographic have over 40 planets scattered among them, though new discoveries are made all the time.

With each new mission and discovery, we learn a little bit more about our pocket of the universe.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Politics

Visualizing the True Size of Land Masses from Largest to Smallest

Maps can distort the size and shape of countries. This visualization puts the true size of land masses together from biggest to smallest.

Published

on

The True Size of Land Masses from Largest to Smallest

Is Greenland the size of the entire African continent?

No…

But looking at a map based on the Mercator projection, you would think so.

Today’s infographic comes from the design studio Art.Lebedev and shows the true size of the world’s land masses in order from largest to smallest using data from NASA and Google.

Check out the actual shape and size of each land mass without any distortions.

Distorting Reality: Mercator Misconceptions

Maps can deceive your eyes but they are still powerful tools for specific purposes. In 1569, the legendary cartographer, Gerardus Mercator, created a new map based on a cylindrical projection of sections of the Earth. These types of maps were suited for nautical navigation since every line on the sphere is a constant course, or loxodrome.

Despite the map’s nautical utility, the Mercator projection has an unwanted downside. The map type increases the sizes of land masses close to the poles (such as in North America, Europe, or North Asia) as a side effect. As a result, Canada and Russia appear to take up approximately 25% of the Earth’s surface, when in reality these nations only occupy 5%.

“Things are not always what they seem; the first appearance deceives many.” – Phaedrus

This collection of images above represents the world’s land masses in their correct proportions. Measurements are based on Google Maps 2016 and NASA Earth Observatory maps, with calculations based on the WGS84 reference ellipsoid, or more simply, a specific model of the Earth’s shape in two dimensions.

We take for granted Google Maps and satellite imaging. Making these accurate representations is no small task – the designers went through six steps and many different iterations of the graphic.

Countries are arranged by descending size and shown without external or dependent territories. For example, the total area for the contiguous United States shown does not include Hawaii, Alaska, or overseas territories.

Top 10 Largest Land Masses

Although Mercator maps distort the size of land masses in the Northern Hemisphere, many of these countries still cover massive territories.

JurisdictionArea (km²)
Russia16,440,626
Antarctica12,269,609
China9,258,246
Canada8,908,366
Brazil8,399,858
United States (contiguous)7,654,643
Australia7,602,329
India3,103,770
Argentina2,712,060
Kazakhstan2,653,464

The top 10 land masses by size account for 55% of the Earth’s total land. The remainder is split by the world’s 195 or so other countries.

Top 10 Smallest Land Masses

Here are the 10 tiniest jurisdictions highlighted on the map:

JurisdictionArea (km²)
Sealand0.001
Kingman Reef0.002
Vatican City0.5
Kure Atoll0.9
Tromelin Island1
Johnston Atoll1
Baker Island1
Howland Island2
Monaco2
Palmyra Atoll3

While the Earth’s land surface has been claimed by many authorities, the actual impact of human activity is less than one would think.

Human Impact: Humbled by Nature

Political borders have claimed virtually every piece of land available. Despite this, only 20% of land on the planet has been visibly impacted by human activity, and only 15% of Earth’s land surface is formally under protection.

The remaining 80% of the land hosts natural ecosystems that help to purify air and water, recycle nutrients, enhance soil fertility, pollinate plants, and break down waste products. The value of maintaining these services to the human economy is worth trillions of U.S. dollars each year.

While some nations are not as big as they look on the map, every piece of land counts.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Eclipse Gold Company Spotlight

Subscribe

Join the 180,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular