Every Vaccine and Treatment in Development for COVID-19, So Far
Connect with us

Science

Every Vaccine and Treatment in Development for COVID-19, So Far

Published

on

Every Vaccine and Treatment in Development for COVID-19, So Far

Every Vaccine and Treatment in Development for COVID-19

As the number of confirmed COVID-19 cases continues to skyrocket, healthcare researchers around the world are working tirelessly to discover new life-saving medical innovations.

The projects these companies are working on can be organized into three distinct groups:

  1. Diagnostics: Quickly and effectively detecting the disease in the first place
  2. Treatments: Alleviating symptoms so people who have disease experience milder symptoms, and lowering the overall mortality rate
  3. Vaccines: Preventing transmission by making the population immune to COVID-19

Today’s graphics provide an in-depth look at who’s in the innovation race to defeat the virus, and they come to us courtesy of Artis Ventures, a venture capital firm focused on life sciences and tech investments.

Editor’s note: R&D is moving fast on COVID-19, and the situation is quite fluid. While today’s post is believed to be an accurate snapshot of all innovations and developments listed by WHO and FDA as of March 30, 2020, it is possible that more data will become available.

Knowledge is Power

Testing rates during this pandemic have been a point of contention. Without widespread testing, it has been tough to accurately track the spread of the virus, as well as pin down important metrics such as infectiousness and mortality rates. Inexpensive test kits that offer quick results will be key to curbing the outbreak.

Here are the companies and institutions developing new tests for COVID-19:

covid-19 diagnostics in development

The ultimate aim of companies like Abbott and BioFire Defense is to create a test that can produce accurate results in as little as a few minutes.

In the Trenches With Coronavirus

While the majority of people infected with COVID-19 only experience minor symptoms, the disease can cause severe issues in some cases – even resulting in death. Most of the forms of treatment being pursued fall into one of two categories:

  1. Treating respiratory symptoms – especially the inflammation that occurs in severe cases
  2. Antiviral growth – essentially stopping viruses from multiplying inside the human body

Here are the companies and institutions developing new treatment options for COVID-19:

covid-19 treatment in development

A wide range of players are in the race to develop treatments related to COVID-19. Pharma and healthcare companies are in the mix, as well as universities and institutes.

One surprising name on the list is Fujifilm. The Japanese company’s stock recently shot up on the news that Avigan, a decades-old flu drug developed through Fujifilm’s healthcare subsidiary, might be effective at helping coronavirus patients recover. The Japanese government’s stockpile of the drug is reportedly enough to treat two million people.

Vaccine

The progress that is perhaps being watched the closest by the general public is the development of a COVID-19 vaccine.

Creating a safe vaccine for a new illness is no easy feat. Thankfully, rapid progress is being made for a variety of reasons, including China’s efforts to sequence the genetic material of Sars-CoV-2 and to share that information with research groups around the world.

Another factor contributing to the unprecedented speed of development is the fact that coronaviruses were already on the radar of health science researchers. Both SARS and MERS were caused by coronaviruses, and even though vaccines were shelved once those outbreaks were contained, learnings can still be applied to defeating COVID-19.

covid-19 vaccines in development

One of the most promising leads on a COVID-19 vaccine is mRNA-1273. This vaccine, developed by Moderna Therapeutics, is being developed with extreme urgency, skipping straight into human trials before it was even tested in animals. If all goes well with the trials currently underway in Washington State, the company hopes to have an early version of the vaccine ready by fall 2020. The earliest versions of the vaccine would be made available to at-risk groups such as healthcare workers.

Further down the pipeline are 15 types of subunit vaccines. This method of vaccination uses a fragment of a pathogen, typically a surface protein, to trigger an immune response, teaching the body’s immune system how to fight off the disease without actually introducing live pathogens.

No Clear Finish Line

Unfortunately, there is no silver bullet for solving this pandemic.

A likely scenario is that teams of researchers around the world will come up with solutions that will incrementally help stop the spread of the virus, mitigate symptoms for those infected, and help lower the overall death toll. As well, early solutions rushed to market will need to be refined over the coming months.

We can only hope that the hard lessons learned from fighting COVID-19 will help stop a future outbreak in its tracks before it becomes a pandemic. For now, those of us on the sideline can only do our best to flatten the curve.

Support the Future of Data Storytelling

Sorry to interrupt your reading, but we have a favor to ask. At Visual Capitalist we believe in a world where data can be understood by everyone. That’s why we want to build the VC App - the first app of its kind combining verifiable and transparent data with beautiful, memorable visuals. All available for free.

As a small, independent media company we don’t have the expertise in-house or the funds to build an app like this. So we’re asking our community to help us raise funds on Kickstarter.

If you believe in data-driven storytelling, join the movement and back us on Kickstarter!

Thank you.

Support the future of data storytelling, back us on Kickstarter
Click for Comments

Science

The Elemental Composition of the Human Body

Of the 118 chemical elements found on Earth, only 21 make up the human body. Here we break down the elemental composition of the average human.

Published

on

The Elemental Composition of a Human Body

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The human body is a miraculous, well-oiled, and exceptionally complex machine. It requires a multitude of functioning parts to come together for a person to live a healthy life—and every biological detail in our bodies, from the mundane to the most magical, is driven by just 21 chemical elements.

Of the 118 elements on Earth, just 21 of them are found in the human body. Together, they make up the medley of divergent molecules that combine to form our DNA, cells, tissues, and organs.

Based on data presented by the International Commission on Radiological Protection (ICRP), in the above infographic, we have broken down a human body to its elemental composition and the percentages in which they exist.

These 21 elements can be categorized into three major blocks depending on the amount found in a human body, the main building block (4 elements), essential minerals (8 elements), and trace elements (9 elements).

The Elemental Four: Ingredients for Life

Four elements, namely, oxygen, carbon, hydrogen, and nitrogen, are considered the most essential elements found in our body.

Oxygen is the most abundant element in the human body, accounting for approximately 61% of a person’s mass. Given that around 60-70% of the body is water, it is no surprise that oxygen and hydrogen are two of the body’s most abundantly found chemical elements. Along with carbon and nitrogen, these elements combine for 96% of the body’s mass.

Here is a look at the composition of the four elements of life:

ElementWeight of Body Mass (kg)Percentage of Body Mass (%)
Oxygen43 kg61.4%
Carbon16 kg22.9%
Hydrogen7.0 kg10.0%
Nitrogen1.8 kg2.6%

Values are for an average human body weighing 70 kg.

Let’s take a look at how each of these four chemical elements contributes to the thriving functionality of our body:

Oxygen

Oxygen plays a critical role in the body’s metabolism, respiration, and cellular oxygenation. Oxygen is also found in every significant organic molecule in the body, including proteins, carbohydrates, fats, and nucleic acids. It is a substantial component of everything from our cells and blood to our cerebral and spinal fluid.

Carbon

Carbon is the most crucial structural element and the reason we are known as carbon-based life forms. It is the basic building block required to form proteins, carbohydrates, and fats. Breaking carbon bonds in carbohydrates and proteins is our primary energy source.

Hydrogen

Hydrogen, the most abundantly found chemical element in the universe, is present in all bodily fluids, allowing the toxins and waste to be transported and eliminated. With the help of hydrogen, joints in our body remain lubricated and able to perform their functions. Hydrogen is also said to have anti-inflammatory and antioxidant properties, helping improve muscle function.

Nitrogen

An essential component of amino acids used to build peptides and proteins is nitrogen. It is also an integral component of the nucleic acids DNA and RNA, the chemical backbone of our genetic information and genealogy.

Essential and Supplemental Minerals

Essential minerals are important for your body to stay healthy. Your body uses minerals for several processes, including keeping your bones, muscles, heart, and brain working properly. Minerals also control beneficial enzyme and hormone production.

Minerals like calcium are a significant component of our bones and are required for bone growth and development, along with muscle contractions. Phosphorus contributes to bone and tooth strength and is vital to metabolizing energy.

Here is a look at the elemental composition of essential minerals:

ElementWeight of Body Mass (g)Percentage of Body Mass (%)
Calcium1000 g1.43%
Phosphorus780 g 1.11%
Potassium140 g0.20%
Sulphur140 g0.20%
Chlorine100 g0.14%
Sodium95 g0.14%
Magnesium19 g0.03%
Iron4.2 g0.01%

Values are for an average human body weighing 70 kg.

Other macro-minerals like magnesium, potassium, iron, and sodium are essential for cell-to-cell communications, like electric transmissions that generate nerve impulses or heart rhythms, and are necessary for maintaining thyroid and bone health.

Excessive deficiency of any of these minerals can cause various disorders in your body. Most humans receive these minerals as a part of their daily diet, including vegetables, meat, legumes, and fruits. In case of deficiencies, though, these minerals are also prescribed as supplements.

Biological Composition of Trace Elements

Trace elements or trace metals are small amounts of minerals found in living tissues. Some of them are known to be nutritionally essential, while others may be considered to be nonessential. They are usually in minimal quantities in our body and make up only 1% of our mass.

Paramount among these are trace elements such as zinc, copper, manganese, and fluorine. Zinc works as a first responder against infections and thereby improves infection resistance, while balancing the immune response.

Here is the distribution of trace elements in our body:

ElementWeight of Body Mass (mg)Percentage of Body Mass (%)
Fluorine2600 mg0.00371%
Zinc2300 mg0.00328%
Copper72 mg0.00010%
Iodine13 mg0.00002%
Manganese12 mg0.00002%
Molybdenum9.5 mg0.00001%
Selenium8 mg0.00001%
Chromium6.6 mg0.00001%
Cobalt1.5 mg0.000002%

Values are for an average human body weighing 70 kg.

Even though only it’s found in trace quantities, copper is instrumental in forming red blood cells and keeping nerve cells healthy. It also helps form collagen, a crucial part of bones and connective tissue.

Even with constant research and studies performed to thoroughly understand these trace elements’ uses and benefits, scientists and researchers are constantly making new discoveries.

For example, recent research shows that some of these trace elements could be used to cure and fight chronic and debilitating diseases ranging from ischemia to cancer, cardiovascular disease, and hypertension.

Continue Reading

Misc

Explainer: What to Know About Monkeypox

What is monkeypox, and what risk does it pose to the public? This infographic breaks down the symptoms, transmission, and more.

Published

on

Explainer: What to Know About Monkeypox

The COVID-19 pandemic is still fresh in the minds of the people around the world, so it comes as no surprise that recent outbreaks of another virus are grabbing headlines.

Monkeypox outbreaks have now been reported in multiple countries, and it has scientists paying close attention. For everyone else, numerous questions come to the surface:

  • How serious is this virus?
  • How contagious is it?
  • Could monkeypox develop into a new pandemic?

Below, we answer these questions and more.

What is Monkeypox?

Monkeypox is a virus in the Orthopoxvirus genus which also includes the variola virus (which causes smallpox) and the cowpox virus. The primary symptoms include fever, swollen lymph nodes, and a distinctive bumpy rash.

There are two major strains of the virus that pose very different risks:

  • Congo Basin strain: 1 in 10 people infected with this strain have died
  • West African strain: Approximately 1 in 100 people infected with this strain died

At the moment, health authorities in the UK have indicated they’re seeing the milder strain in patients there.

Where did Monkeypox Originate From?

The virus was originally discovered in the Democratic Republic of Congo in monkeys kept for research purposes (hence the name). Eventually, the virus made the jump to humans more than a decade after its discovery in 1958.

It is widely assumed that vaccination against another similar virus, smallpox, helped keep monkeypox outbreaks from occurring in human populations. Ironically, the successful eradication of smallpox, and eventual winding down of that vaccine program, has opened the door to a new viral threat. There is now a growing population of people who no longer have immunity against the virus.

Now that travel restrictions are lifting in many parts of the world, viruses are now able to hop between nations again. As of the publishing of this article, a handful of cases have now been reported in the U.S., Canada, the UK, and a number of European countries.

On the upside, contact tracing has helped authorities piece together the transmission of the virus. While cases are rare in Europe and North America, it is considered endemic in parts of West Africa. For example, the World Health Organization reports that Nigeria has experienced over 550 reported monkeypox cases from 2017 to today. The current UK outbreak originated from an individual who returned from a trip to Nigeria.

Could Monkeypox become a new pandemic?

Monkeypox, which primarily spreads through animal-to-human interaction, is not known to spread easily between humans. Most individuals infected with monkeypox pass the virus to between zero and one person, so outbreaks typically fizzle out. For this reason, the fact that outbreaks are occurring in several countries simultaneously is concerning for health authorities and organizations that monitor viral transmission. Experts are entertaining the possibility that the virus’ rate of transmission has increased.

Images of people covered in monkeypox lesions are shocking, and people are understandably concerned by this virus, but the good news is that members of the general public have little to fear at this stage.

I think the risk to the general public at this point, from the information we have, is very, very low.
–Tom Inglesby, Director, Johns Hopkins Center for Health Security

» For up-to-date information on monkeypox cases, check out Global.Health’s tracking spreadsheet

Continue Reading

Subscribe

Popular