Nature Timespiral: The Evolution of Earth from the Big Bang
Connect with us

Science

Nature Timespiral: The Evolution of Earth from the Big Bang

Published

on

This spiral timeline shows the events that led us to our modern world, from the Big Bang to the present.

Click to view a larger version of the graphic. For a full-size option or to inquire about posters, please visit Pablo Carlos Budassi’s website.

Nature Timespiral: The Evolution of Earth from the Big Bang

Since the dawn of humanity, we have looked questioningly to the heavens with great interest and awe. We’ve called on the stars to guide us, and have made some of humanity’s most interesting discoveries based on those observations. This also led us to question our existence and how we came to be in this moment in time.

That journey began some 14 billion years ago, when the Big Bang led to the universe emerging from a hot, dense sea of matter and energy. As the cosmos expanded and cooled, they spawned galaxies, stars, planets, and eventually, life.

In the above visualization, Pablo Carlos Buddassi illustrates this journey of epic proportions in the intricately designed Nature Timespiral, depicting the various eras that the Earth has gone through since the inception of the universe itself.

Evolutionary Timeline of the World

Not much is known about what came before the Big Bang, but we do know that it launched a sequence of events that gave rise to the universal laws of physics and the chemical elements that make up matter. How the Earth came about, and life subsequently followed, is a wondrous story of time and change.

Let’s look at what transpired after the Big Bang to trace our journey through the cosmos.

The Big Bang and Hadean Eon

The Big Bang formed the entire universe that we know, including the elements, forces, stars, and planets. Hydrogen and massive dissipation of heat dominated the initial stages of the universe.

During a time span known as the Hadean eon, our Solar System formed within a large cloud of gas and dust. The Sun’s gravitational pull brought together spatial particles to create the Earth and other planets, but they would take a long time to reach their modern forms.

Archean Eon (4 – 2.5 billion years ago)

After its initial formation, the surface of the Earth was extremely hot and entirely liquid. This subsequent eon saw the planet cool down massively, solidifying some of the liquid surface and giving rise to oceans and continents, as well as the first recorded history of rocks.

Early in this time frame, known as the Archean eon, life appeared on Earth. The oldest discovered fossils, consisting of tiny, preserved microorganisms, date to this eon roughly 3.5 billion years ago.

Paleoproterozoic Era (2.5 – 1.6 billion years ago)

The first era of the Proterozoic Eon, the Paleoproterozoic, was the longest in Earth’s geological history. Tectonic plates arose and landmasses shifted across the globe—it was the beginning of the formation of the Earth we know today.

Cyanobacteria, the first organisms using photosynthesis, also appeared during this period. Their photosynthetic activity brought about a rapid upsurge in atmospheric oxygen, resulting in the Great Oxidation Event. This killed off many primordial anaerobic bacterial groups but paved the way for multicellular life to grow and flourish.

Mesoproterozoic Era (1.6 – 1 billion years ago)

The Mesoproterozoic occurred during what is known as the “boring billion” stage of Earth’s history. That is due to a lack of widespread geochemical activity and the relative stability of the ocean carbon reservoirs.

But this era did see the break-up of the supercontinents and the formation of new continents. This period also saw the first noted case of sexual reproduction among organisms and the probable appearance of multicellular organisms and green plants.

Neoproterozoic Era (1 billion – 542.0 million years ago)

In some respects, the Neoproterozoic era is one of the most profound time periods in Earth’s history. It bookends two major moments in the planet’s evolutionary timeline, with predominantly microbial life on one side, and the introduction of diverse, multicellular organisms on the other.

At the same time, Earth also experienced severe glaciations known as the Cryogenian Period and its first ice age, also known as Snowball Earth.

The era saw the formation of the ozone layer and the earliest evidence of multicellular life, including the emergence of the first hard-shelled animals, such as trilobites and archaeocyathids.

Paleozoic Era (541 million – 252 million years ago)

The Paleozoic is best known for ushering in an explosion of life on Earth, with two of the most critical events in the history of animal life. At its beginning, multicellular animals underwent a dramatic Cambrian explosion in aquatic diversity, and almost all living animals appeared within a few millions of years.

At the other end of the Paleozoic, the largest mass extinction in history resulted in 96% of marine life and 70% of terrestrial life dying out. Halfway between these events, animals, fungi, and plants colonized the land, and the insects took to the air.

Mesozoic Era (252 million – 66 million years ago)

The Mesozoic was the Age of Reptiles. Dinosaurs, crocodiles, and pterosaurs ruled the land and air. This era can be subdivided into three periods of time:

  • Triassic (252 to 201.3 million years ago)
  • Jurassic (201.3 to 145 million years ago)
  • Cretaceous (145 to 66 million years ago)

The rise of the dinosaurs began at the end of the Triassic Period. A fossil of one of the earliest-known dinosaurs, a two-legged omnivore roughly three feet long-named Eoraptor, is dated all the way back to this time.

Scientists believe the Eoraptor (and a few other early dinosaurs still being discovered today) evolved into the many species of well-known dinosaurs that would dominate the planet during the Jurassic period. They would continue to flourish well into the Cretaceous period, when it is widely accepted that the Chicxulub impactor, the plummeting asteroid that crashed into Earth off the coast of Mexico, brought about the end of the Age of Reptiles.

Cenozoic Era (66 million – Present Day)

After the end of the Age of Dinosaurs, this era saw massive adaptations by natural flora and fauna to survive. The plants and animals that formed during this era look most like those on Earth today.

The earliest forms of modern mammals, amphibians, birds, and reptiles can be traced back to the Cenozoic. Human history is entirely contained within this period, as apes developed through evolutionary pressure and gave rise to the present-day human being or Homo sapiens.

Compared to the evolutionary timeline of the world, human history has risen quite rapidly and dramatically. Going from our first stone tools and the Age of the Kings to concrete jungles with modern technology may seem like a long journey, but compared to everything that came before it, is but a brief blink of an eye.

*Editor’s note: An earlier version of this article contained errors in the header graphic and an incorrect citation, and has since been updated.

green check mark icon

This article was published as a part of Visual Capitalist's Creator Program, which features data-driven visuals from some of our favorite Creators around the world.

Subscribe to Visual Capitalist
Click for Comments

Science

The Elemental Composition of the Human Body

Of the 118 chemical elements found on Earth, only 21 make up the human body. Here we break down the elemental composition of the average human.

Published

on

The Elemental Composition of a Human Body

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

The human body is a miraculous, well-oiled, and exceptionally complex machine. It requires a multitude of functioning parts to come together for a person to live a healthy life—and every biological detail in our bodies, from the mundane to the most magical, is driven by just 21 chemical elements.

Of the 118 elements on Earth, just 21 of them are found in the human body. Together, they make up the medley of divergent molecules that combine to form our DNA, cells, tissues, and organs.

Based on data presented by the International Commission on Radiological Protection (ICRP), in the above infographic, we have broken down a human body to its elemental composition and the percentages in which they exist.

These 21 elements can be categorized into three major blocks depending on the amount found in a human body, the main building block (4 elements), essential minerals (8 elements), and trace elements (9 elements).

The Elemental Four: Ingredients for Life

Four elements, namely, oxygen, carbon, hydrogen, and nitrogen, are considered the most essential elements found in our body.

Oxygen is the most abundant element in the human body, accounting for approximately 61% of a person’s mass. Given that around 60-70% of the body is water, it is no surprise that oxygen and hydrogen are two of the body’s most abundantly found chemical elements. Along with carbon and nitrogen, these elements combine for 96% of the body’s mass.

Here is a look at the composition of the four elements of life:

ElementWeight of Body Mass (kg)Percentage of Body Mass (%)
Oxygen43 kg61.4%
Carbon16 kg22.9%
Hydrogen7.0 kg10.0%
Nitrogen1.8 kg2.6%

Values are for an average human body weighing 70 kg.

Let’s take a look at how each of these four chemical elements contributes to the thriving functionality of our body:

Oxygen

Oxygen plays a critical role in the body’s metabolism, respiration, and cellular oxygenation. Oxygen is also found in every significant organic molecule in the body, including proteins, carbohydrates, fats, and nucleic acids. It is a substantial component of everything from our cells and blood to our cerebral and spinal fluid.

Carbon

Carbon is the most crucial structural element and the reason we are known as carbon-based life forms. It is the basic building block required to form proteins, carbohydrates, and fats. Breaking carbon bonds in carbohydrates and proteins is our primary energy source.

Hydrogen

Hydrogen, the most abundantly found chemical element in the universe, is present in all bodily fluids, allowing the toxins and waste to be transported and eliminated. With the help of hydrogen, joints in our body remain lubricated and able to perform their functions. Hydrogen is also said to have anti-inflammatory and antioxidant properties, helping improve muscle function.

Nitrogen

An essential component of amino acids used to build peptides and proteins is nitrogen. It is also an integral component of the nucleic acids DNA and RNA, the chemical backbone of our genetic information and genealogy.

Essential and Supplemental Minerals

Essential minerals are important for your body to stay healthy. Your body uses minerals for several processes, including keeping your bones, muscles, heart, and brain working properly. Minerals also control beneficial enzyme and hormone production.

Minerals like calcium are a significant component of our bones and are required for bone growth and development, along with muscle contractions. Phosphorus contributes to bone and tooth strength and is vital to metabolizing energy.

Here is a look at the elemental composition of essential minerals:

ElementWeight of Body Mass (g)Percentage of Body Mass (%)
Calcium1000 g1.43%
Phosphorus780 g 1.11%
Potassium140 g0.20%
Sulphur140 g0.20%
Chlorine100 g0.14%
Sodium95 g0.14%
Magnesium19 g0.03%
Iron4.2 g0.01%

Values are for an average human body weighing 70 kg.

Other macro-minerals like magnesium, potassium, iron, and sodium are essential for cell-to-cell communications, like electric transmissions that generate nerve impulses or heart rhythms, and are necessary for maintaining thyroid and bone health.

Excessive deficiency of any of these minerals can cause various disorders in your body. Most humans receive these minerals as a part of their daily diet, including vegetables, meat, legumes, and fruits. In case of deficiencies, though, these minerals are also prescribed as supplements.

Biological Composition of Trace Elements

Trace elements or trace metals are small amounts of minerals found in living tissues. Some of them are known to be nutritionally essential, while others may be considered to be nonessential. They are usually in minimal quantities in our body and make up only 1% of our mass.

Paramount among these are trace elements such as zinc, copper, manganese, and fluorine. Zinc works as a first responder against infections and thereby improves infection resistance, while balancing the immune response.

Here is the distribution of trace elements in our body:

ElementWeight of Body Mass (mg)Percentage of Body Mass (%)
Fluorine2600 mg0.00371%
Zinc2300 mg0.00328%
Copper72 mg0.00010%
Iodine13 mg0.00002%
Manganese12 mg0.00002%
Molybdenum9.5 mg0.00001%
Selenium8 mg0.00001%
Chromium6.6 mg0.00001%
Cobalt1.5 mg0.000002%

Values are for an average human body weighing 70 kg.

Even though only it’s found in trace quantities, copper is instrumental in forming red blood cells and keeping nerve cells healthy. It also helps form collagen, a crucial part of bones and connective tissue.

Even with constant research and studies performed to thoroughly understand these trace elements’ uses and benefits, scientists and researchers are constantly making new discoveries.

For example, recent research shows that some of these trace elements could be used to cure and fight chronic and debilitating diseases ranging from ischemia to cancer, cardiovascular disease, and hypertension.

Continue Reading

Misc

Explainer: What to Know About Monkeypox

What is monkeypox, and what risk does it pose to the public? This infographic breaks down the symptoms, transmission, and more.

Published

on

Explainer: What to Know About Monkeypox

The COVID-19 pandemic is still fresh in the minds of the people around the world, so it comes as no surprise that recent outbreaks of another virus are grabbing headlines.

Monkeypox outbreaks have now been reported in multiple countries, and it has scientists paying close attention. For everyone else, numerous questions come to the surface:

  • How serious is this virus?
  • How contagious is it?
  • Could monkeypox develop into a new pandemic?

Below, we answer these questions and more.

What is Monkeypox?

Monkeypox is a virus in the Orthopoxvirus genus which also includes the variola virus (which causes smallpox) and the cowpox virus. The primary symptoms include fever, swollen lymph nodes, and a distinctive bumpy rash.

There are two major strains of the virus that pose very different risks:

  • Congo Basin strain: 1 in 10 people infected with this strain have died
  • West African strain: Approximately 1 in 100 people infected with this strain died

At the moment, health authorities in the UK have indicated they’re seeing the milder strain in patients there.

Where did Monkeypox Originate From?

The virus was originally discovered in the Democratic Republic of Congo in monkeys kept for research purposes (hence the name). Eventually, the virus made the jump to humans more than a decade after its discovery in 1958.

It is widely assumed that vaccination against another similar virus, smallpox, helped keep monkeypox outbreaks from occurring in human populations. Ironically, the successful eradication of smallpox, and eventual winding down of that vaccine program, has opened the door to a new viral threat. There is now a growing population of people who no longer have immunity against the virus.

Now that travel restrictions are lifting in many parts of the world, viruses are now able to hop between nations again. As of the publishing of this article, a handful of cases have now been reported in the U.S., Canada, the UK, and a number of European countries.

On the upside, contact tracing has helped authorities piece together the transmission of the virus. While cases are rare in Europe and North America, it is considered endemic in parts of West Africa. For example, the World Health Organization reports that Nigeria has experienced over 550 reported monkeypox cases from 2017 to today. The current UK outbreak originated from an individual who returned from a trip to Nigeria.

Could Monkeypox become a new pandemic?

Monkeypox, which primarily spreads through animal-to-human interaction, is not known to spread easily between humans. Most individuals infected with monkeypox pass the virus to between zero and one person, so outbreaks typically fizzle out. For this reason, the fact that outbreaks are occurring in several countries simultaneously is concerning for health authorities and organizations that monitor viral transmission. Experts are entertaining the possibility that the virus’ rate of transmission has increased.

Images of people covered in monkeypox lesions are shocking, and people are understandably concerned by this virus, but the good news is that members of the general public have little to fear at this stage.

I think the risk to the general public at this point, from the information we have, is very, very low.
–Tom Inglesby, Director, Johns Hopkins Center for Health Security

» For up-to-date information on monkeypox cases, check out Global.Health’s tracking spreadsheet

Continue Reading

Subscribe

Popular