Energy
Map: Oil and Gas Spills in the U.S. Since 2010
Mapped: Oil and Gas Spills in the U.S. Since 2010
The recent energy crisis has highlighted the integral role that hydrocarbons play in fueling the modern world, but these fossil fuels still come with their fair share of downsides.
Aside from the obvious climate impact they bring, one other downside in particular is spills, which can lead to ecological and economic damage. These can happen due to pipeline leaks, train derailments, or other industrial disasters.
This graphic from Preyash Shah provides a visual overview of every oil and gas spill in the contiguous U.S. since 2010. Data is tracked by the U.S. government’s Pipeline and Hazardous Materials Safety Administration (PHMSA).
U.S. Oil and Gas Spills (2010‒2022)
The majority of spills that have occurred come mostly from crude oil, followed by petroleum products and gas. Note that this data covers the quantity of spills and not damages or volume.
Spills by Product Type | Portion of all U.S. Spills |
---|---|
Crude oil | 51% |
Petroleum products | 32% |
Diesel | 14% |
Gasoline | 13% |
Others | 5% |
Highly volatile liquids & flammable gas | 16% |
Liquefied petroleum gas / natural gas liquids | 8% |
Other highly volatile liquids | 6% |
Anhydrous ammonia | 2% |
Others | 3% |
Carbon dioxide | 2% |
Biofuel | 1% |
Crude oil, which makes up just over half of documented spills, is also one of the most costly. Contaminations can persist for years after a spill, and its impact on local mammals and waterfowl is particularly harsh.
This has been the case with the Deepwater Horizon spill (also known as the “BP oil spill”), which experts say is still causing harm in the Gulf of Mexico.
Other products with lots of spills include petroleum products such as diesel or gasoline, as well as liquefied natural gas or other volatile liquids. Interestingly, liquefied carbon dioxide can also be transported in pipelines, commonly used for carbon capture storage, but requires high pressure to maintain its state.
When looking at the location of spills, it’s clear that the South Central states have experienced the highest number of disasters. In contrast, the West Coast has had substantially less activity. However, this makes much more sense when looking at the dominant oil producing states, where Texas and surrounding neighbors reign supreme.
Rank | State | Oil & Gas Spills (2010-2022) |
---|---|---|
1 | Texas | 1936 |
2 | Oklahoma | 407 |
3 | Louisiana | 297 |
4 | California | 253 |
5 | Kansas | 208 |
6 | Illinois | 181 |
7 | Wyoming | 155 |
8 | New Jersey | 128 |
9 | New Mexico | 114 |
10 | North Dakota | 98 |
11 | Indiana | 93 |
12 | Minnesota | 83 |
13 | Ohio | 82 |
14 | Pennsylvania | 71 |
15 | Iowa | 66 |
16 | Missouri | 65 |
17 | Michigan | 56 |
18 | Colorado | 55 |
19 | Mississippi | 53 |
20 | Montana | 46 |
21 | Wisconsin | 42 |
22 | Alabama | 36 |
23 | Arkansas | 33 |
24 | Newbraska | 31 |
25 | Georgia | 28 |
26 | Virginia | 27 |
27 | North Carolina | 24 |
28 | Kentucky | 21 |
29 | South Carolina | 19 |
30 | Alaska | 16 |
30 | New York | 16 |
32 | Tennessee | 15 |
33 | South Dakota | 14 |
33 | Washington | 14 |
35 | Florida | 13 |
36 | Maryland | 11 |
37 | Utah | 9 |
38 | Idaho | 8 |
38 | Oregon | 8 |
40 | Hawaii | 7 |
41 | West Virginia | 6 |
42 | Massachesueuts | 3 |
43 | Conneticut | 2 |
43 | Maine | 2 |
43 | Nevada | 2 |
43 | Puerto Rico | 2 |
47 | Arizona | 0 |
47 | Delaware | 0 |
47 | New Hampshire | 0 |
47 | Vermont | 0 |
Of the 4,901 spills during this period, Texas accounts for 1,936 or roughly 40% of all oil and gas spills. This is followed by Oklahoma, which has had 407 spills and is one of the largest net exporters of oil and gas in the country.
What Causes Spills?
Oil and gas spills actually have a surprisingly long history, with one of the earliest dating back to 1889, when a spill was reported on the coast between Los Angeles and San Diego.
Causes have consisted primarily of weather, natural disasters, equipment and technological malfunction, as well as human error.
However, they only became a widespread problem around the halfway mark of the 20th century, when petroleum extraction and production really began to take off. This era also saw the emergence of supertankers, which can transport half a million tons of oil but therefore make the risk of spills even costlier.
In fact, the biggest spill off U.S. waters after the Deepwater Horizon disaster is the 1989 Exxon Valdez spill in Alaska, when a tanker crashed into a reef and 11 million gallons of oil spilled into the Pacific Ocean.

This article was published as a part of Visual Capitalist's Creator Program, which features data-driven visuals from some of our favorite Creators around the world.
Energy
Mapped: Asia’s Biggest Sources of Electricity by Country
Asia is on its way to account for half of the world’s electricity generation by 2025. How is this growing demand currently being met?

Mapped: Asia’s Biggest Sources of Electricity by Country
This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.
The International Energy Agency (IEA) predicts that Asia will account for half of the world’s electricity consumption by 2025, with one-third of global electricity being consumed in China.
To explore how this growing electricity demand is currently being met, the above graphic maps out Asia’s main sources of electricity by country, using data from the BP Statistical Review of World Energy and the IEA.
A Coal-Heavy Electricity Mix
Although clean energy has been picking up pace in Asia, coal currently makes up more than half of the continent’s electricity generation.
No Asian countries rely on wind, solar, or nuclear energy as their primary source of electricity, despite the combined share of these sources doubling over the last decade.
% of total electricity mix, 2011 | % of total electricity mix, 2021 | |
---|---|---|
Coal | 55% | 52% |
Natural Gas | 19% | 17% |
Hydro | 12% | 14% |
Nuclear | 5% | 5% |
Wind | 1% | 4% |
Solar | 0% | 4% |
Oil | 6% | 2% |
Biomass | 1% | 2% |
Total Electricity Generated | 9,780 terawatt-hours | 15,370 terawatt-hours |
The above comparison shows that the slight drops in the continent’s reliance on coal, natural gas, and oil in the last decade have been absorbed by wind, solar, and hydropower. The vast growth in total electricity generated, however, means that a lot more fossil fuels are being burned now (in absolute terms) than at the start of the last decade, despite their shares dropping.
Following coal, natural gas comes in second place as Asia’s most used electricity source, with most of this demand coming from the Middle East and Russia.
Zooming in: China’s Big Electricity Demand
While China accounted for just 5% of global electricity demand in 1990, it is en route to account for 33% by 2025. The country is already the largest electricity producer in the world by far, annually generating nearly double the electricity produced by the second largest electricity producer in the world, the United States.
With such a large demand, the current source of China’s electricity is worthy of consideration, as are its plans for its future electricity mix.
Currently, China is one of the 14 Asian countries that rely on coal as its primary source of electricity. In 2021, the country drew 62% of its electricity from coal, a total of 5,339 TWh of energy. To put that into perspective, this is approximately three times all of the electricity generated in India in the same year.
Following coal, the remainder of China’s electricity mix is as follows.
Source | % of total electricity mix (China, 2021) |
---|---|
Coal | 62% |
Hydropower | 15% |
Wind | 8% |
Nuclear | 5% |
Solar | 4% |
Natural Gas | 3% |
Biomass | 2% |
Despite already growing by 1.5x in the last decade, China’s demand for electricity is still growing. Recent developments in the country’s clean energy infrastructure point to most of this growth being met by renewables.
China does also have ambitious plans in place for its clean energy transition beyond the next few years. These include increasing its solar capacity by 667% between 2025 and 2060, as well as having wind as its primary source of electricity by 2060.
Asia’s Road to Clean Energy
According to the IEA, the world reached a new all-time high in power generation-related emissions in 2022, primarily as a result of the growth in fossil-fuel-generated electricity in the Asia Pacific.
With that said, these emissions are set to plateau by 2025, with a lot of the global growth in renewables and nuclear power being seen in Asia.
Currently, nuclear power is of particular interest in the continent, especially with 2022’s energy crisis highlighting the need for energy independence and security. India, for instance, is set to have an 80% growth in its nuclear electricity generation in the next two years, with Japan, South Korea, and China following suit in increasing their nuclear capacity.
The road ahead also hints at other interesting insights, specifically when it comes to hydropower in Asia. With heatwaves and droughts becoming more and more commonplace as a result of climate change, the continent may be poised to learn some lessons from Europe’s record-low hydropower generation in 2022, diverting its time and resources to other forms of clean energy, like wind and solar.
Whatever the future holds, one thing is clear: with ambitious plans already underway, Asia’s electricity mix may look significantly different within the next few decades.
-
Misc3 weeks ago
Ranked: Biotoxins in Nature, by Lethal Dose
-
Markets2 weeks ago
Mapped: The Largest 15 U.S. Cities by GDP
-
Markets3 weeks ago
Which Countries Have the Lowest Inflation?
-
Misc1 week ago
Vintage Viz: China’s Export Economy in the Early 20th Century
-
Markets3 weeks ago
Visualizing the Global Share of U.S. Stock Markets
-
Technology1 week ago
Timeline: The Shocking Collapse of Silicon Valley Bank
-
Money3 weeks ago
Visualized: The Most (and Least) Expensive Cities to Live In
-
Datastream1 week ago
Mapped: Legal Sports Betting Totals by State