Interactive: Comparing Asian Powers to the U.S.
Connect with us

Politics

Interactive: Comparing Asian Powers to the U.S.

Published

on

 

Interactive: Comparing Asian Powers to the U.S.

Whether it’s the planning and execution of massive infrastructure projects like One Belt, One Road, or the dramatic increase in wealth occurring in the region, it’s clear that the economic boom in the East is rapidly expanding Asia’s influence on the world stage.

More importantly, this growing economic might is also translating to geopolitical influence – and over time, it could have a paradigm-shifting impact on the balance of power in the world.

How to Compare Asian Powers

Today’s interactive infographic on the Asia Power Index comes to us from the Lowy Institute, and it introduces a methodology to compare Asian powers using macro categories such as economic resources, military capabilities, cultural influence, diplomatic influence, and defense networks.

Each category is informed by a number of indicators – and there are 114 metrics in total. They include quantifiable numbers from public sources on things like military expenditures, global exports, global investment outflows, number of supercomputers, satellites launched, etc.

Interestingly, all of the data used to score powers in Asia is also contrasted to the United States, which helps give an idea of relative significance.

The Most Powerful Nations

We recommend exploring the interactive piece to get the most out of the data – but here are some meaningful spoilers to start with:

Overall Power
Taking all 114 metrics into consideration puts the U.S. into the #1 spot with a score of 85.0. Right behind are China (75.5), Japan (42.1), India (41.5), Russia (33.3), and then Australia (32.5). The U.S. leads in five categories, but falls behind China in three: Future Trends, Diplomatic Influence, and Economic Relationships.

Economic Resources
In this category, the U.S. and China are neck-and-neck with scores of 91.7 and 91.3 respectively. The next closest Asian powers are well-behind: Japan (32.9), India (26.8), Russia (17.0) and South Korea (17.0).

Military Capability
As expected, the U.S. ranks #1 with 94.6. On the Asian side, we have China (69.9), Russia (61.4), India (48.9), and North Korea (35.8).

Future Trends
This category takes into account future projections on economic growth, military expenditures, and working age population size. Not surprisingly, China ranks #1 here at 83.0. Behind it is the United States (60.0), and India (55.6). Other Asian powers are a ways further down the list, with Indonesia (11.7) and Russia (11.4) being the only other countries with double-digit scores.

For more, we recommend checking out the full-width interactive version provided by the Lowy Institute here.

Subscribe to Visual Capitalist
Click for Comments

War

What Weapons are Banned or Restricted in War?

This infographic covers the various types of weapons that are restricted or prohibited in war, according to international humanitarian laws.

Published

on

What Weapons Are Banned or Restricted in War?

For thousands of years, there have been rules to control the types of weapons in warfare—for instance, the use of poison in armed combat was forbidden in Ancient Greece.

But it wasn’t until the 19th century that international agreements were made to legally regulate the types of weapons that are allowed (and banned) in wars around the world.

This graphic outlines the weapons that are banned or limited in war, according to international humanitarian laws that are outlined in the United Nations Convention on Certain Conventional Weapons (CCW).

CCW and The Five Protocols

The CCW, also known as the Inhumane Weapons Convention, is an international agreement that restricts the use of weapons that have been deemed unnecessarily cruel and inhumane.

Currently, there are 125 State Parties involved in the agreement, with signatures from an additional four states. In the CCW, there are five protocols outlined that restrict or limit the use of the following weapons:

  • Non-detectable fragments: weapons specially designed to shatter into tiny pieces, which aren’t detectable in the human body. Examples are fragmented bullets or projectiles filled with broken glass.
  • Mines, booby traps, and other devices: This includes anti-personnel mines, which are mines specially designed to target humans rather than tanks.
  • Incendiary weapons: Weapons that cause fires aren’t permitted for use on on civilian populations or in forested areas.
  • Blinding lasers: Laser weapons specifically designed to cause permanent blindness.
  • Explosive remnants of war: Parties that have used cluster bombs in combat are required to help clear any unexploded remains.

It’s worth flagging that, under the CCW, the use of cluster bombs is not outright banned. However, their use and production is prohibited under separate legislation called the Convention on Cluster Munitions (CCM).

At this time, the CCW does not have enforcement processes in place, or systems to resolve any breaches of the agreement.

The Chemical Weapons Convention

Another international treaty that aims to limit the use of unnecessarily dangerous weapons is the Chemical Weapons Convention (CWC), which prohibits the creation, acquisition, stockpiling, and use of chemical weapons by State Parties.

examples of banned and controlled chemical weapons

193 State Parties have signed the CWC, and one more state (Israel) has technically signed the agreement but hasn’t yet made it official.

Syria signed the agreement back in 2013, but according to reports from UN human rights investigators, the Syrian government has used chemical weapons on numerous occasions throughout its ongoing civil war.

Is Russia Using Prohibited Weapons in Ukraine?

In the current conflict between Russia and Ukraine, it’s been reported that Russia’s been using several weapons that are banned by international legislation, including cluster bombs and explosive weapons. Harvard Law expert Bonnie Docherty explains why these weapons are so dangerous:

  • They scatter submunitions over vast areas of land, meaning they can hit unintended targets
  • Many don’t explode and end up laying dormant for years

According to reports from Human Rights Watch, Russia has been using cluster bombs in several areas of Ukraine, such as the heavily populated city of Mykolaiv, and in Solyani, a suburban area just outside of Mykolaiv.

AI in Weapons and Warfare

Over the last few decades, certain protocols and restrictions in the CCW have been amended and changed based on societal changes and technological improvements.

So, as military weapons continue to improve, and technology like commercial drones become more common, proper legislation around drone use in warfare may be necessary.

Currently, there is no international legislation that bans the use of drones in war. However, several global defense companies are popping up to try and find ways to counter these new military technologies. In fact, the global addressable market for counter drones and tracking systems is estimated at $10 billion worldwide.

Continue Reading

Misc

The Top 10 Largest Nuclear Explosions, Visualized

Just how powerful are nuclear bombs? Here’s a look at the top 10 largest nuclear explosions.

Published

on

infographic comparing the top 10 largest nuclear explosions

The Top 10 Largest Nuclear Explosions, Visualized

Just how powerful are nuclear explosions?

The U.S.’ Trinity test in 1945, the first-ever nuclear detonation, released around 19 kilotons of explosive energy. The explosion instantly vaporized the tower it stood on and turned the surrounding sand into green glass, before sending a powerful heatwave across the desert.

As the Cold War escalated in the years after WWII, the U.S. and the Soviet Union tested bombs that were at least 500 times greater in explosive power. This infographic visually compares the 10 largest nuclear explosions in history.

The Anatomy of a Nuclear Explosion

After exploding, nuclear bombs create giant fireballs that generate a blinding flash and a searing heatwave. The fireball engulfs the surrounding air, getting larger as it rises like a hot air balloon.

As the fireball and heated air rise, they are flattened by cooler, denser air high up in the atmosphere, creating the mushroom “cap” structure. At the base of the cloud, the fireball causes physical destruction by sending a shockwave moving outwards at thousands of miles an hour.

anatomy of a nuclear explosion's mushroom cloud

A strong updraft of air and dirt particles through the center of the cloud forms the “stem” of the mushroom cloud. In most atomic explosions, changing atmospheric pressure and water condensation create rings that surround the cloud, also known as Wilson clouds.

Over time, the mushroom cloud dissipates. However, it leaves behind radioactive fallout in the form of nuclear particles, debris, dust, and ash, causing lasting damage to the local environment. Because the particles are lightweight, global wind patterns often distribute them far beyond the place of detonation.

With this context in mind, here’s a look at the 10 largest nuclear explosions.

#10: Ivy Mike (1952)

In 1952, the U.S. detonated the Mike device—the first-ever hydrogen bomb—as part of Operation Ivy. Hydrogen bombs rely on nuclear fusion to amplify their explosions, producing much more explosive energy than atomic bombs that use nuclear fission.

Weighing 140,000 pounds (63,500kg), the Ivy Mike test generated a yield of 10,400 kilotons, equivalent to the explosive power of 10.4 million tons of TNT. The explosion was 700 times more powerful than Little Boy, the bomb dropped on Hiroshima in 1945.

#9: Castle Romeo (1954)

Castle Romeo was part of the Operation Castle series of U.S. nuclear tests taking place on the Marshall Islands. Shockingly, the U.S. was running out of islands to conduct tests, making Romeo the first-ever test conducted on a barge in the ocean.

At 11,000 kilotons, the test produced more than double its predicted explosive energy of 4,000 kilotons. Its fireball, as seen below, is one of the most iconic images ever captured of a nuclear explosion.

iconic image of the castle romeo nuclear explosion of 1954

#8: Soviet Test #123 (1961)

Test #123 was one of the 57 tests conducted by the Soviet Union in 1961. Most of these tests were conducted on the Novaya Zemlya archipelago in Northwestern Russia. The bomb yielded 12,500 kilotons of explosive energy, enough to vaporize everything within a 2.1 mile (3.5km) radius.

#7: Castle Yankee (1954)

Castle Yankee was the fifth test in Operation Castle. The explosion marked the second-most powerful nuclear test by the U.S.

It yielded 13,500 kilotons, much higher than the predicted yield of up to 10,000 kilotons. Within four days of the blast, its fallout reached Mexico City, roughly 7,100 miles (11,400km) away.

#6: Castle Bravo (1954)

Castle Bravo, the first of the Castle Operation series, accidentally became the most powerful nuclear bomb tested by the U.S.

Due to a design error, the explosive energy from the bomb reached 15,000 kilotons, two and a half times what was expected. The mushroom cloud climbed up to roughly 25 miles (40km).

As a result of the test, an area of 7,000 square miles was contaminated, and inhabitants of nearby atolls were exposed to high levels of radioactive fallout. Traces of the blast were found in Australia, India, Japan, and Europe.

#5, #4, #3: Soviet Tests #173, #174, #147 (1962)

In 1962, the Soviet Union conducted 78 nuclear tests, three of which produced the fifth, fourth, and third-most powerful explosions in history. Tests #173, #174, and #147 each yielded around 20,000 kilotons. Due to the absolute secrecy of these tests, no photos or videos have been released.

#2: Soviet Test #219 (1962)

Test #219 was an atmospheric nuclear test carried out using an intercontinental ballistic missile (ICBM), with the bomb exploding at a height of 2.3 miles (3.8km) above sea level. It was the second-most powerful nuclear explosion, with a yield of 24,200 kilotons and a destructive radius of ~25 miles (41km).

#1: Tsar Bomba (1961)

Tsar Bomba, also called Big Ivan, needed a specially designed plane because it was too heavy to carry on conventional aircraft. The bomb was attached to a giant parachute to give the plane time to fly away.

The explosion, yielding 50,000 kilotons, obliterated an abandoned village 34 miles (55km) away and generated a 5.0-5.25 magnitude earthquake in the surrounding region. Initially, it was designed as a 100,000 kiloton bomb, but its yield was cut to half its potential by the Soviet Union. Tsar Bomba’s mushroom cloud breached through the stratosphere to reach a height of over 37 miles (60km), roughly six times the flying height of commercial aircraft.

The two bombs dropped on Hiroshima and Nagasaki had devastating consequences, and their explosive yields were only a fraction of the 10 largest explosions. The power of modern nuclear weapons makes their scale of destruction truly unfathomable, and as history suggests, the outcomes can be unpredictable.

Continue Reading

Subscribe

Popular