Connect with us

Energy

Cobalt: A Precarious Supply Chain

Published

on

Cobalt: A Precarious Supply Chain

Cobalt: A Precarious Supply Chain

How does your mobile phone last for 12 hours on just one charge?

It’s the power of cobalt, along with several other energy metals, that keeps your lithium-ion battery running.

The only problem? Getting the metal from the source to your electronics is not an easy feat, and this makes for an extremely precarious supply chain for manufacturers.

Our infographic today comes to us from LiCo Energy Metals, and it focuses on where this important ingredient of green technology originates from, and the supply risks associated with its main sources.

What is Cobalt?

Cobalt is a transition metal found between iron and nickel on the periodic table. It has a high melting point (1493°C) and retains its strength to a high temperature.

Similar to iron or nickel, cobalt is ferromagnetic. It can retain its magnetic properties to 1100°C, a higher temperature than any other material. Ferromagnetism is the strongest type of magneticism: it’s the only one that typically creates forces strong enough to be felt, and is responsible for the magnets encountered in everyday life.

These unique properties make the metal perfect for two specialized high-tech purposes: superalloys and battery cathodes.

Superalloys

High-performance alloys drive 18% of cobalt demand. The metal’s ability to withstand intense temperatures and conditions makes it perfect for use in:

  • Turbine blades
  • Jet engines
  • Gas turbines
  • Prosthetics
  • Permanent magnets

Lithium-ion Batteries:

Batteries drives 49% of demand – and most of this comes from cobalt’s usage in lithium-ion battery cathodes:

Type of lithium-ion cathodeCobalt in cathodeSpec. energy (Wh/kg)
LFP0%120
LMO0%140
NMC15%200
LCO55%200
NCA10%245

The three most powerful cathode formulations for li-ion batteries all need cobalt. As a result, the metal is indispensable in many of today’s battery-powered devices.

  • Mobile phones (LCO)
  • Tesla Model S (NCA)
  • Tesla Powerwall (NMC)
  • Chevy Volt (NMC/LMO)

The Tesla Powerwall 2 uses approximately 7kg, and a Tesla Model S (90 kWh) uses approximately 22.5kg of the energy metal.

The Cobalt Supply Chain

Cobalt production has gone almost straight up to meet demand, and production has more than doubled since the early 2000s.

But while the metal is desired, getting it is the hard part:

1. No native cobalt has ever been found in nature.

There are four widely-distributed ores that exist, but almost no cobalt is mined from them as a primary source.

2. Most cobalt production is mined as a by-product.

Mine source% cobalt production
Nickel (by-product)60%
Copper (by-product)38%
Cobalt (primary)2%

This means it is hard to expand production when more is needed.

3. Most production occurs in the DRC, a country with elevated supply risks:

CountryTonnes%
United States5240.4%
China1,4171.2%
DRC67,97555.4%
Rest of World52,78543.0%
Total122,701100.0%

(Source: CRU, estimated production for 2017, tonnes)

The Future of Cobalt Supply

Companies like Tesla and Panasonic need reliable sources of the metal, and right now there aren’t many failsafes.

The U.S. hasn’t mined cobalt in significant volumes since 1971, and the USGS reports that the United States only has 301 tonnes of the metal stored in stockpiles.

The reality is that the DRC produces about half of all cobalt, and it also holds approximately 47% of all global reserves.

Why is this a concern for end-users?

1. The DRC is one of the poorest, corrupt, and most coercive countries in the planet.

It ranks:

  • 151st out of 159 countries in the Human Freedom Index
  • 176th out of 188 countries on the Human Development Index
  • 178th out of 184 countries in terms of GDP per capita ($455)
  • 148th out of 169 countries in the Corruption Perceptions Index

2. The DRC has had more deaths from war since WWII than any other country on the planet.

Recent wars in the DRC:

  • First Congo War (1996-1997) – A foreign invasion by Rwanda that overthrew the Mobutu regime.
  • Second Congo War (1998-2003) – The bloodiest conflict in world history since WW2 with 5.4 million deaths.

3. Human Rights in Mining

The DRC government estimates that 20% of all cobalt production in the country comes from artisanal miners – independent workers who dig holes and mine ore without sophisticated mines or machinery.

There are at least 100,000 artisanal cobalt miners in the DRC, and UNICEF estimates that up to 40,000 children could be in the trade. Children can be as young as seven years old, and they can work up to 12 hrs with physically demanding work, earning $2 per day.

Meanwhile, Amnesty International alleges that Apple, Samsung, and Sony fail to do basic checks in making sure the metal in their supply chains did not come from child labor.

Most major companies have vowed that any such practices will not be tolerated in their supply chains.

Other Sources

Where will tomorrow’s supply come from, and will the role of the DRC eventually diminish? Will Tesla achieve its goal of a North American supply chain for its key metal inputs?

Mining exploration companies are already looking to regions like Ontario, Idaho, British Columbia, and the Northwest Territories to find tomorrow’s deposits:

Ontario: Ontario is one of the only places in the world where cobalt-primary mines that have existed. This camp is nearby the aptly named town of Cobalt, Ontario, which is located halfway between Sudbury – the world’s “Nickel Capital”, and Val-d’Or, one of the most famous gold camps in the world.

Idaho: Idaho is known as the “Gem State” while also being known for its silver camps in Couer D’Alene – but it has also been a cobalt producer in the past.

BC: The mountains of British Columbia are known for their rich gold, silver, copper, zinc, and met coal deposits. But cobalt often occurs with copper, and some mines in BC have produced cobalt in the past.

Northwest Territories: Cobalt can also be found up north, as the NWT becomes a more interesting mineral destination for companies. 160km from Yellowknife is a gold-cobalt-bismuth-copper deposit being developed.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Energy

Charting the Flows of Energy Consumption by Source and Country (1969-2018)

For the last 50 years, fossil fuels have dominated energy consumption. This chart looks at how the energy mix is changing in over 60+ countries.

Published

on

Energy consumption by source and country

Charting Energy Consumption by Source and Country

View the interactive version of this post by clicking here.

Over the last 50 years, the world has seen a colossal increase in energy consumption—and with the ongoing transition to renewable energy, it’s interesting to look at how these sources of energy have been evolving over time.

While some countries continue to rely heavily on fossil fuels like oil, coal, and natural gas, others have integrated alternative energy sources into their mix.

This visualization comes to us from Brian Moore and it charts the evolution of energy consumption in the 64 countries that have data available for all of the last 50 years.

Tera-What? The Most Prominent Sources of Energy (2009-2018)

First, let’s take a look at which sources have produced the most energy over the last decade of data. Energy consumption is measured in terawatt-hours (TWh)—a unit of energy equal to outputting one trillion watts for an hour.

Energy Source% of Total Energy Consumption
(2009-2018)
Sum of Total Energy
(2009-2018) (TWh)
Oil34.3%509,800
Coal29.2%434,300
Gas22.8%339,300
Hydropower6.7%99,200
Nuclear4.6%68,800
Wind1.3%18,700
Geothermal/Biomass/Other0.9%12,700
Solar0.4%5,700
Total100.0%1,389,300 TWh

Looking at this data, it’s clear that fossil fuels have been used much more than alternative sources. A deeper dive into the topic helps explain why.

Fossil Fuels: What the Data Shows

As the predominant source of energy, fossil fuels collectively accounted for a massive 86.2% of total energy consumption over 2009-2018, or roughly 1.2 million TWh. If you’re wondering, that’s enough to power the equivalent of 109 billion U.S. homes with electricity for a year.

Among fossil fuel sources, oil emerges as the clear leader, responsible for 34.3% or 509,800 TWh of energy consumption over 2009-2018. Apart from being the primary fuel for transportation throughout history, oil remains relatively affordable—making it an easy choice for producers and consumers alike.

Closely following oil is coal, which countries rely on for its abundance, low costs, and low infrastructure requirements. Over the last decade of data, 29.2% of total energy came from coal, amounting to a substantial 434,300 TWh.

As a cleaner alternative to coal, natural gas has increased in popularity. Gas accounted for 22.8% or 339,300 TWh of energy consumed between 2009-2018, mainly attributed to its ample supply and affordability.

What About Renewables?

Only 13.8% of energy consumption over 2009-2018 came from renewable or alternative sources of energy, and hydropower accounts for nearly half of it. Why has the use of environmentally-friendly energy sources been so low?

Setting up alternative power plants—especially wind, solar, and nuclear—requires significant capital investment, while facing competition from cheaper and more convenient fossil fuels. The barriers to adopting renewable energy have been weakening, but still remain quite high for low-income countries.

Wind and solar energy were responsible for a mere 1.7% of energy consumption. Compared to fossil fuels like oil and coal, this percentage seems even more minuscule than it does on its own—mainly attributable to the high costs traditionally associated with wind and solar energy.

The Top 10 Countries Relying on Fossil Fuels

Fossil fuels have been the predominant source of energy over the years. After all, 43 of these 64 countries sourced more than 80% of their energy from fossil fuels over 2009-2018.

Here are the ones that come out on top:

Country% of Energy Consumed From Fossil Fuels
(2009-2018)
Most Used Fossil Fuel
(2009-2018)
Oman 🇴🇲100%Gas
Saudi Arabia 🇸🇦100%Oil
Trinidad and Tobago 🇹🇹100%Gas
Kuwait 🇰🇼100%Oil
Qatar 🇶🇦99.9%Gas
United Arab Emirates 🇦🇪99.9%Gas
Hong Kong 🇭🇰99.9%Oil
Algeria 🇩🇿98.8%Gas
Singapore 🇸🇬98.8%Oil
Israel 🇮🇱98.1%Oil

Although it is startling to see that several countries were 100% reliant on fossil fuels, it comes as no surprise that these are countries with abundant reserves of oil or natural gas. Not only are fossil fuels central to certain economies in Middle Eastern and North African (MENA), but they also remain highly affordable for consumers in these places.

On a broader scale, developing and low-income countries are heavily dependent on fossil fuels such as coal for access to cheap electricity and ease of installation.

The Top 10 Countries Using Alternative Energy Sources

The transition to alternative energy sources has been welcomed by many countries, but only a few have prioritized its adoption in the energy mix. Here’s a look at the top 10:

Country% of Energy From Alternative Sources
(2009-2018)
Most Used Alternative Energy Source
(2009-2018)
Iceland 🇮🇸81.6%Hydropower
Norway 🇳🇴67.5%Hydropower
Sweden 🇸🇪65.3%Hydropower
Switzerland 🇨🇭50.5%Hydropower
France 🇫🇷47.0%Nuclear
Finland 🇫🇮39.5%Nuclear
New Zealand 🇳🇿37.2%Hydropower
Brazil 🇧🇷37.2%Hydropower
Canada 🇨🇦34.8%Hydropower
Austria 🇦🇹31.7%Hydropower

Iceland is the only country to have sourced over 80% of its energy from alternative sources over 2009-2018. In general, developed European countries are leading the charge—with Iceland, Norway, Sweden, Switzerland, and France making the top five.

The dominance of hydropower is notable, and so is the lack of wind and solar energy sources. Denmark had the highest percentage of wind energy in its mix, with 14.5%, whereas Italy had the highest percentage of solar, with just 2.4%.

It should be kept in mind that this percentage does not account for population differences. For example, although Italy boasted the highest percentage of solar in its energy mix with 2.4%, China consumed the most amount of energy from solar sources—despite it accounting for only 0.3% of total Chinese energy consumption.

Nevertheless, the costs of solar and wind energy have been falling continuously, and the potential for growth in the renewable energy sector is higher than ever.

The Transition to Renewables: Are We On Track?

Since the Industrial Revolution, fossil fuels have been the primary source of energy worldwide. More recently, the use of renewable energy sources has increased, but not substantially enough.

This predominant reliance on fossil fuels is not doing the transition to renewable energy any favors, but it shines a light on the massive untapped potential for alternative energies, especially in the developing world.

With the prices of renewable energy at record lows and increasing investment flows, the next decade will be a defining one for the global transition to clean energy.

Correction: A modified version of Brian Moore’s visualization was previous published here. We’ve since updated it to the original design.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Energy

Mapped: The World’s Nuclear Reactor Landscape

Which countries are turning to nuclear energy, and which are turning away? Mapping and breaking down the world’s nuclear reactor landscape.

Published

on

The World’s Changing Nuclear Reactor Landscape

View a more detailed version of the above map by clicking here

Following the 2011 Fukushima nuclear disaster in Japan, the most severe nuclear accident since Chernobyl, many nations reiterated their intent to wean off the energy source.

However, this sentiment is anything but universal—in many other regions of the world, nuclear power is still ramping up, and it’s expected to be a key energy source for decades to come.

Using data from the Power Reactor Information System, maintained by the International Atomic Energy Agency, the map above gives a comprehensive look at where nuclear reactors are subsiding, and where future capacity will reside.

Increasing Global Nuclear Use

Despite a dip in total capacity and active reactors last year, nuclear power still generated around 10% of the world’s electricity in 2019.

Global Nuclear Reactors and Electrical Capacity

Part of the increased capacity came as Japan restarted some plants and European countries looked to replace aging reactors. But most of the growth is driven by new reactors coming online in Asia and the Middle East.

China is soon to have more than 50 nuclear reactors, while India is set to become a top-ten producer once construction on new reactors is complete.

Asia's Growing Nuclear Footprint

Decreasing Use in Western Europe and North America

The slight downtrend from 450 operating reactors in 2018 to 443 in 2019 was the result of continued shutdowns in Europe and North America. Home to the majority of the world’s reactors, the two continents also have the oldest reactors, with many being retired.

At the same time, European countries are leading the charge in reducing dependency on the energy source. Germany has pledged to close all nuclear plants by 2022, and Italy has already become the first country to completely shut down their plants.

Despite leading in shutdowns, Europe still emerges as the most nuclear-reliant region for a majority of electricity production and consumption.

world-nuclear-landscape-supplemental-3

In addition, some countries are starting to reassess nuclear energy as a means of fighting climate change. Reactors don’t produce greenhouse gases during operation, and are more efficient (and safer) than wind and solar per unit of electricity.

Facing steep emission reduction requirements, a variety of countries are looking to expand nuclear capacity or to begin planning for their first reactors.

A New Generation of Nuclear Reactors?

For those parties interested in the benefits of nuclear power, past accidents have also led towards a push for innovation in the field. That includes studies of miniature nuclear reactors that are easier to manage, as well as full-size reactors with robust redundancy measures that won’t physically melt down.

Additionally, some reactors are being designed with the intention of utilizing accumulated nuclear waste—a byproduct of nuclear energy and weapon production that often had to be stored indefinitely—as a fuel source.

With some regions aiming to reduce reliance on nuclear power, and others starting to embrace it, the landscape is certain to change.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular