Cobalt: A Precarious Supply Chain
Connect with us

Energy

Cobalt: A Precarious Supply Chain

Published

on

Cobalt: A Precarious Supply Chain

Cobalt: A Precarious Supply Chain

How does your mobile phone last for 12 hours on just one charge?

It’s the power of cobalt, along with several other energy metals, that keeps your lithium-ion battery running.

The only problem? Getting the metal from the source to your electronics is not an easy feat, and this makes for an extremely precarious supply chain for manufacturers.

Our infographic today comes to us from LiCo Energy Metals, and it focuses on where this important ingredient of green technology originates from, and the supply risks associated with its main sources.

What is Cobalt?

Cobalt is a transition metal found between iron and nickel on the periodic table. It has a high melting point (1493°C) and retains its strength to a high temperature.

Similar to iron or nickel, cobalt is ferromagnetic. It can retain its magnetic properties to 1100°C, a higher temperature than any other material. Ferromagnetism is the strongest type of magneticism: it’s the only one that typically creates forces strong enough to be felt, and is responsible for the magnets encountered in everyday life.

These unique properties make the metal perfect for two specialized high-tech purposes: superalloys and battery cathodes.

Superalloys

High-performance alloys drive 18% of cobalt demand. The metal’s ability to withstand intense temperatures and conditions makes it perfect for use in:

  • Turbine blades
  • Jet engines
  • Gas turbines
  • Prosthetics
  • Permanent magnets

Lithium-ion Batteries:

Batteries drives 49% of demand – and most of this comes from cobalt’s usage in lithium-ion battery cathodes:

Type of lithium-ion cathodeCobalt in cathodeSpec. energy (Wh/kg)
LFP0%120
LMO0%140
NMC15%200
LCO55%200
NCA10%245

The three most powerful cathode formulations for li-ion batteries all need cobalt. As a result, the metal is indispensable in many of today’s battery-powered devices.

  • Mobile phones (LCO)
  • Tesla Model S (NCA)
  • Tesla Powerwall (NMC)
  • Chevy Volt (NMC/LMO)

The Tesla Powerwall 2 uses approximately 7kg, and a Tesla Model S (90 kWh) uses approximately 22.5kg of the energy metal.

The Cobalt Supply Chain

Cobalt production has gone almost straight up to meet demand, and production has more than doubled since the early 2000s.

But while the metal is desired, getting it is the hard part:

1. No native cobalt has ever been found in nature.

There are four widely-distributed ores that exist, but almost no cobalt is mined from them as a primary source.

2. Most cobalt production is mined as a by-product.

Mine source% cobalt production
Nickel (by-product)60%
Copper (by-product)38%
Cobalt (primary)2%

This means it is hard to expand production when more is needed.

3. Most production occurs in the DRC, a country with elevated supply risks:

CountryTonnes%
United States5240.4%
China1,4171.2%
DRC67,97555.4%
Rest of World52,78543.0%
Total122,701100.0%

(Source: CRU, estimated production for 2017, tonnes)

The Future of Cobalt Supply

Companies like Tesla and Panasonic need reliable sources of the metal, and right now there aren’t many failsafes.

The U.S. hasn’t mined cobalt in significant volumes since 1971, and the USGS reports that the United States only has 301 tonnes of the metal stored in stockpiles.

The reality is that the DRC produces about half of all cobalt, and it also holds approximately 47% of all global reserves.

Why is this a concern for end-users?

1. The DRC is one of the poorest, corrupt, and most coercive countries in the planet.

It ranks:

  • 151st out of 159 countries in the Human Freedom Index
  • 176th out of 188 countries on the Human Development Index
  • 178th out of 184 countries in terms of GDP per capita ($455)
  • 148th out of 169 countries in the Corruption Perceptions Index

2. The DRC has had more deaths from war since WWII than any other country on the planet.

Recent wars in the DRC:

  • First Congo War (1996-1997) – A foreign invasion by Rwanda that overthrew the Mobutu regime.
  • Second Congo War (1998-2003) – The bloodiest conflict in world history since WW2 with 5.4 million deaths.

3. Human Rights in Mining

The DRC government estimates that 20% of all cobalt production in the country comes from artisanal miners – independent workers who dig holes and mine ore without sophisticated mines or machinery.

There are at least 100,000 artisanal cobalt miners in the DRC, and UNICEF estimates that up to 40,000 children could be in the trade. Children can be as young as seven years old, and they can work up to 12 hrs with physically demanding work, earning $2 per day.

Meanwhile, Amnesty International alleges that Apple, Samsung, and Sony fail to do basic checks in making sure the metal in their supply chains did not come from child labor.

Most major companies have vowed that any such practices will not be tolerated in their supply chains.

Other Sources

Where will tomorrow’s supply come from, and will the role of the DRC eventually diminish? Will Tesla achieve its goal of a North American supply chain for its key metal inputs?

Mining exploration companies are already looking to regions like Ontario, Idaho, British Columbia, and the Northwest Territories to find tomorrow’s deposits:

Ontario: Ontario is one of the only places in the world where cobalt-primary mines that have existed. This camp is nearby the aptly named town of Cobalt, Ontario, which is located halfway between Sudbury – the world’s “Nickel Capital”, and Val-d’Or, one of the most famous gold camps in the world.

Idaho: Idaho is known as the “Gem State” while also being known for its silver camps in Couer D’Alene – but it has also been a cobalt producer in the past.

BC: The mountains of British Columbia are known for their rich gold, silver, copper, zinc, and met coal deposits. But cobalt often occurs with copper, and some mines in BC have produced cobalt in the past.

Northwest Territories: Cobalt can also be found up north, as the NWT becomes a more interesting mineral destination for companies. 160km from Yellowknife is a gold-cobalt-bismuth-copper deposit being developed.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the World’s Largest Hydroelectric Dams

Hydroelectric dams generate 40% of the world’s renewable energy, the largest of any type. View this infographic to learn more.

Published

on

Visualizing the World’s Largest Hydroelectric Dams

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Continue Reading

Energy

What are the Benefits of Fusion Energy?

One of the most promising technologies, fusion, has attracted the attention of governments and private companies.

Published

on

General-Fusion_Benefits-of-Fusion
The following content is sponsored by General Fusion

What are The Benefits of Fusion Energy?

As the world moves towards net-zero emissions, sustainable and affordable power sources are urgently needed by humanity.

One of the most promising technologies, fusion, has attracted the attention of governments and private companies like Chevron and Google. In fact, Bloomberg Intelligence has estimated that the fusion market may eventually be valued at $40 trillion.

In this infographic sponsored by General Fusion, we discuss the benefits of fusion as a clean energy source.

The Ultimate Source of Energy 

Fusion powers the sun and the stars, where the immense force of gravity compresses and heats hydrogen plasma, fusing it into helium and releasing enormous amounts of energy. Here on Earth, scientists use isotopes of hydrogen—deuterium and tritium—to power fusion plants.

Fusion energy offers a wide range of benefits, such as:

1. Ample resources:

Both atoms necessary for nuclear fusion are abundant on Earth: deuterium is found in seawater, while tritium can be produced from lithium.

2. Sustainable

Energy-dense generation like fusion minimizes land use needs and can replace aging infrastructure like old power plants. 

3. Clean

There are no CO₂ or other harmful atmospheric emissions from the fusion process.

4. Scalable

With limited expected regulatory burden or export controls, fusion scales effectively with a small land footprint that can be located close to cities.

5. Safety advantage

Unlike atomic fission, fusion does not create any long-lived radioactive nuclear waste. Its radiation profile is similar to widely used medical and industrial applications like cyclotrons for cancer treatment.

6. Reliable

Fusion energy is on-demand and independent from the weather, making it an excellent option in a dependable portfolio for power generation.

Commercializing Fusion Energy

More than 130 countries have now set or are considering a target of reducing emissions to net-zero by 2050. Meanwhile, global energy demand is expected to increase by 47% in the next 30 years.

While renewables like wind and solar are intermittent and need a baseload source of clean energy to supplement them, fusion, when commercially implemented, could deliver clean, abundant, reliable, and cost-competitive energy. 

General Fusion seeks to transform the world’s energy supply with the most practical path to commercial fusion energy. Click here to learn more.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular