Connect with us

Batteries

The Cathode is the Key to Advancing Lithium-Ion Technology

Published

on

Cathodes: The Key to Advancing Lithium-Ion Technology

Cathodes: The Key to Advancing Lithium-Ion Technology

The inner-workings of most commercialized batteries are typically pretty straightforward.

The lead-acid battery, which is the traditional battery used in the automotive sector, is as easy as it gets. Put two lead plates in sulphuric acid, and you’re off to the races.

However, lithium-ion batteries are almost infinitely more complex than their predecessors. That’s because “lithium-ion” refers to a mechanism – the transfer of lithium-ions – which can occur in a variety of cathode, anode, and electrolyte environments. As a result, there’s not just one type of lithium-ion battery, but instead the name acts as an umbrella that represents thousands of different formulations that could work.

The Cathode’s Importance

Today’s infographic comes to us from Nano One, a Canadian tech company that specializes in battery materials, and it provides interesting context on lithium-ion battery advancements over the last couple of decades.

Since the commercialization of the lithium-ion battery in the 1990s, there have been relatively few developments in the materials or technology used for anodes and electrolytes. For example, graphite is still the material of choice for anodes, though researchers are trying to figure out how to make the switch over to silicon. Meanwhile, the electrolyte is typically a lithium salt in an organic solvent (except in lithium-ion polymer batteries).

Cathodes, on the other hand, are a very different story. That’s because they are usually made up of metal oxides or phosphates – and there are many different possible combinations that can be used.

Here are five examples of commercialized cathode formulations, and the metals needed for them (aside from lithium):

Cathode TypeChemistryExample Metal PortionsExample Use
NCALiNiCoAlO280% Nickel, 15% Cobalt, 5% AluminumTesla Model S
LCOLiCoO2100% CobaltApple iPhone
LMOLiMn2O4100% ManganeseNissan Leaf
NMCLiNiMnCoO2Nickel 33.3%, Manganese 33.3%, Cobalt 33.3%Tesla Powerwall
LFPLiFePO4100% IronStarter batteries

Lithium, cobalt, manganese, nickel, aluminum, and iron are just some of the metals used in current lithium-ion batteries out there – and each battery type has considerably different properties. The type of cathode chosen can affect the energy density, power density, safety, cycle life, and cost of the overall battery, and this is why researchers are constantly experimenting with new ideas and combinations.

Drilling Down

For companies like Tesla, which wants the exit rate of lithium-ion cells to be faster than “bullets from a machine gun”, the cathode is of paramount importance. Historically, it’s where most advancements in lithium-ion battery technology have been made.

Cathode choice is a major factor for determining battery energy density, and cathodes also typically account for 25% of lithium-ion battery costs. That means the cathode can impact both the performance and cost pieces of the $/kWh equation – and building a better cathode will likely be a key driver for the success of the green revolution.

Luckily, the future of cathode development has many exciting prospects. These include concepts such as building cathodes with layered-layered composite structures or orthosilicates, as well as improvements to the fundamental material processes used in cathode assembly.

As these new technologies are applied, the cost of lithium-ion batteries will continue to decrease. In fact, experts are now saying that it won’t be long before batteries will hit $80/kWh – a cost that would make EVs undeniably cheaper than traditional gas-powered vehicles.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
Comments

Batteries

Animation: The Entire History of Tesla in 5 Minutes

Everything you need to know about the history of Tesla, including Elon Musk’s vision for the future of the iconic electric car company.

Published

on

How did Tesla accelerate from 0-60 mph in such a short period of time?

Today’s five-minute-long animation is presented in association with Global Energy Metals, and it tells you everything you need to know about the history of Tesla, including Elon Musk’s vision for the future of the iconic electric car company.

Watch the video:

The video primarily keys in on Tesla’s successes and the setbacks the company has faced along the way – it also shows that Tesla was able to pass Ford in market value just seven years after the company’s IPO.

The Rise of Tesla Series

The above video is the culmination of our Rise of Tesla Series, which also includes three full-length infographics that tell a more in-depth story about the history of Tesla, and what the company aspires to:

1. Tesla’s Origin Story (View infographic)

  • What was the vision behind the founding of Tesla?
  • Early hurdles faced by the company, including its near escape from the brink of bankruptcy
  • Elon Musk’s takeover of the company, and the dramatic actions taken to keep it alive
  • A timeline showing the development of the Roadster, and why this first car matters

2. Tesla’s Journey: How it Passed Ford in Value (View Infographic)

  • The company’s plan to parlay the Roadster’s success into a viable long-term company strategy
  • Introducing the Tesla Model S and Model X
  • How the company would use the Gigafactory concept to bring economies of scale to battery production
  • Other milestones: Powerwall, Autopilot, and Tesla’s growing Supercharger network
  • The announcement of the Model 3

3. Elon Musk’s Vision for the Future of Tesla (View Infographic)

  • Detailing Tesla’s ambitions for the future, including how it plans to productize the factory
  • Other vehicles Tesla plans to release, including the Tesla Semi and a future ultra low cost model
  • How Tesla plans to combine fully autonomous cars with the future sharing economy
  • Exploding demand for lithium-ion batteries, and why Tesla is planning on building additional Gigafactories

Part 1: TeslaPart 2: From IPO and OnwardsVisualizing Elon Musk

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Automotive

How Much Copper is in an Electric Vehicle?

Have you ever wondered how much copper is in an electric vehicle? This infographic shows the metal’s properties as well as the quantity of copper used.

Published

on

How Much Copper is in an Electric Vehicle?

Copper’s special relationship with electricity has been apparent since ship designers first regularly began installing copper to protect the masts of wooden ships from lightning in the early 19th century.

Today, of course, you might be more used to seeing copper’s electrical applications through the use of power lines, telephone wires, and wiring in practically every major home appliance you own.

Millions of tons get used for these applications every year, but it is still early days for copper’s use in electrification. That’s because copper will continue to be a critical component of the green energy revolution, thanks to the rising adoption of battery-powered vehicles.

Why Copper?

Today’s visualization comes to us from Canadian Platinum Corp., and it focuses on showing how much copper is in an electric vehicle, along with the properties that make it the ideal choice for an EV-powered future.

Here is why copper is a crucial component to vehicle manufacturers:

Cost
Copper costs roughly $0.20 per ounce, compared to silver ($15/oz) and gold ($1200/oz), making it by far the cheapest option for electrical wire.

Conductivity:
Copper is nearly as conductive as silver – the most conductive metal – but comes at a fraction of the cost.

Ductility:
Copper can easily be shaped into wire, which is important for most electrical applications.

It’s also important to note that temperature does not affect copper’s conductivity, which makes the metal ideal for automobiles in all climates.

Copper in Gas vs. Electric Vehicles

The UBS Evidence Lab tore apart a traditional gas-powered vehicle as well as an EV to compare the different quantities of raw materials used.

What they found was crucial: there is 80% more copper in a Chevrolet Bolt, in comparison to a similar-sized Volkswagen Golf.

The major reason for this is that at the heart of every EV is an electric motor, which is built with copper, steel, and permanent magnets (rare earths). Electric motors tend to be much simpler than gas-powered engines, which have hundreds of moving parts.

Incredibly, in an electric motor, there can be more than a mile of copper wiring inside the stator.

The More Electric, the More Copper

According to Copper.org, along the scale from gas-powered cars to fully electrical vehicles, copper use increases dramatically.

Conventional gas-powered cars contain 18 to 49 lbs. of copper while a battery-powered EV contains 183 lbs. Meanwhile, for a fully electrical bus, a whopping 814 lbs. of copper is needed.

With the rapidly increasing adoption of electric vehicles, copper will be an essential material for the coming electrification of all forms of ground transport.

Copper is at the heart of the electric vehicle and the world will need more. By 2027, copper demand stemming from EVs is expected to increase by 1.7 million tonnes, which is a number just shy of China’s entire copper production in 2017.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading
The Green Organic Dutchman Company Spotlight

Subscribe

Join the 100,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular