Connect with us

Mining

All the Metals We Mined in 2021: Visualized

Published

on

Subscribe to the Elements free mailing list for more like this

infographic showing all the metals mined in 2021

All the Metals We Mined in 2021

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

“If you can’t grow it, you have to mine it” is a famous saying that encapsulates the importance of minerals and metals in the modern world.

From every building we enter to every device we use, virtually everything around us contains some amount of metal.

The above infographic visualizes all 2.8 billion tonnes of metals mined in 2021 and highlights each metal’s largest end-use using data from the United States Geological Survey (USGS).

Why Do We Mine So Much Iron Ore?

Iron ore accounted for 93% of the metals mined in 2021, with 2.6 billion tonnes extracted from the ground. It’s important to note that this is ore production, which is typically higher than metal production since metals are extracted and refined from ores. For example, the iron metal content of this ore is estimated at 1.6 billion tonnes.

Metal/Ore2021 Mine Production (tonnes)% of Total
Iron ore2,600,000,00093.4%
Industrial metals181,579,8926.5%
Technology and precious metals1,474,8890.05%
Total2,783,054,781100.0%

With 98% of it converted into pig iron to make steel, iron ore is ubiquitous in our lives. Steel made from iron ore is used in construction, transportation, and household appliances, and it’s likely that you encounter something made out of it every day, especially if you live in a city.

Due to its key role in building infrastructure, iron ore is one of the most important materials supporting urbanization and economic growth.

Industrial Metals

Industrial metals are largely used in steelmaking, construction, chemical manufacturing, and as alloying agents. In 2021, the world mined over 181 million tonnes of these metals.

Industrial Metals2021 Mine Production (tonnes)% of Total
Aluminum*68,000,00037.4%
Chromium41,000,00022.6%
Copper21,000,00011.6%
Manganese20,000,00011.0%
Zinc13,000,0007.2%
Titanium (mineral concentrates)9,000,0005.0%
Lead4,300,0002.4%
Nickel2,700,0001.5%
Zirconium Minerals (Zircon)1,200,0000.7%
Magnesium*950,0000.5%
Strontium360,0000.2%
Uranium48,3320.03%
Bismuth*19,0000.01%
Mercury2,3000.001%
Beryllium2600.0001%
Total181,579,892100.0%

*Represents refinery/smelter production.

Aluminum accounted for nearly 40% of industrial metal production in 2021. China was by far the largest aluminum producer, making up more than half of global production. The construction industry uses roughly 25% of annually produced aluminum, with 23% going into transportation.

Chromium is a lesser-known metal with a key role in making stainless steel stainless. In fact, stainless steel is usually composed of 10% to 30% of chromium, enhancing its strength and corrosion resistance.

Copper, manganese, and zinc round out the top five industrial metals mined in 2021, each with its own unique properties and roles in the economy.

Technology and Precious Metals

Technology metals include those that are commonly used in technology and devices. Compared to industrial metals, these are usually mined on a smaller scale and could see faster consumption growth as the world adopts new technologies.

Technology and Precious Metals2021 Mine Production (tonnes)% of Total
Tin300,00020.3%
Molybdenum300,00020.3%
Rare Earth Oxides280,00019.0%
Cobalt170,00011.5%
Vanadium110,0007.5%
Lithium106,0007.2%
Tungsten79,0005.4%
Niobium75,0005.1%
Silver24,0001.6%
Cadmium24,0001.6%
Gold3,0000.2%
Tantalum2,1000.1%
Indium*9200.1%
Gallium4300.03%
Platinum Group Metals3800.03%
Rhenium590.004%
Total1,474,889100.0%

*Represents refinery/smelter production.

The major use of rhenium, one of the rarest metals in terms of production, is in superalloys that are critical for engine turbine blades in aircraft and gas turbine engines. The petroleum industry uses it in rhenium-platinum catalysts to produce high-octane gasoline for vehicles.

In terms of growth, clean energy technology metals stand out. For example, lithium production has more than doubled since 2016 and is set to ride the boom in EV battery manufacturing. Over the same period, global rare earth production more than doubled, driven by the rising demand for magnets.

Indium is another interesting metal on this list. Most of it is used to make indium tin oxide, an important component of touchscreens, TV screens, and solar panels.

The Metal Mining Megatrend

The world’s material consumption has grown significantly over the last few decades, with growing economies and cities demanding more resources.

Global production of both iron ore and aluminum has more than tripled relative to the mid-1990s. Other metals, including copper and steel, have also seen significant consumption growth.

Today, economies are not only growing and urbanizing but also adopting mineral-intensive clean energy technologies, pointing towards further increases in metal production and consumption.

Click for Comments

Mining

White Gold: Mapping U.S. Lithium Mines

In this graphic, Visual Capitalist partnerered with EnergyX to explore the size and location of U.S. lithium mines.

Published

on

Teaser graphic of a map that shows the sizes of the top U.S. lithium mines.

Published

on

The following content is sponsored by EnergyX

White Gold: Mapping U.S. Lithium Mines

The U.S. doubled imports of lithium-ion batteries for the third consecutive year in 2022, and with EV demand growing yearly, U.S. lithium mines must ramp up production or rely on other nations for their supply of refined lithium.

To determine if the domestic U.S. lithium opportunity can meet demand, we partnered with EnergyX to determine how much lithium sits within U.S. borders. 

U.S. Lithium Projects

The most crucial measure of a lithium mine’s potential is the quantity that can be extracted from the source.

For each lithium resource, the potential volume of lithium carbonate equivalent (LCE) was calculated with a ratio of one metric ton of lithium producing 5.32 metric tons of LCE. Cumulatively, existing U.S. lithium projects contain 94.8 million metric tons of LCE.

RankProject NameLCE, million metric tons (est.)
1McDermitt Caldera21.5
2Thacker Pass19.1
3Tonopah Flats18.0
4TLC Lithium10.7
5Clayton Valley (Century Lithium)6.3
6Zeus Lithium6.3
7Rhyolite Ridge3.4
8Arkansas Smackover (Phase 1A)2.8
9Basin Project2.2
10McGee Deposit2.1
11Arkansas Smackover (South West)1.8
12Clayton Valley (Lithium-X, Pure Energy)0.8
13Big Sandy0.3
14Imperial Valley/Salton Sea0.3

U.S. Lithium Opportunities, By State

U.S. lithium projects mainly exist in western states, with comparatively minor opportunities in central or eastern states.

StateLCE, million metric tons (est.)
Nevada88.2
Arkansas4.6
Arizona2.5
California0.3

Currently, the U.S. is sitting on a wealth of lithium that it is underutilizing. For context, in 2022, the U.S. only produced about 5,000 metric tons of LCE and imported a projected 19,000 metric tons of LCE, showing that the demand for the mineral is healthy.  

The Next Gold Rush?

U.S. lithium companies have the opportunity to become global leaders in lithium production and accelerate the transition to sustainable energy sources. This is particularly important as the demand for lithium is increasing every year.

EnergyX is on a mission to meet U.S. lithium demands using groundbreaking technology that can extract 300% more lithium from a source than traditional methods.

You can take advantage of this opportunity by investing in EnergyX and joining other significant players like GM in becoming a shareholder.

You may also like

Subscribe

Continue Reading
NOVAGOLD. Pure Gold. Precious Opportunity.

Subscribe

Popular