Connect with us

Technology

The 7 Most Important Scientific Breakthroughs of 2017

Published

on

The pace of technological change is accelerating – and every new year seems to bring a more incredible list of scientific breakthroughs than the last.

This time 2017 is no exception, and the year was filled with game-changing innovations that are on the cutting edge of science. These breakthroughs will surely alter how we think of the world, and they will likely also translate into future unknown technologies that will affect how our society operates.

Scientific Breakthroughs in 2017

Today’s infographic comes to us from Futurism, and it highlights the big scientific advancements that happened over the course of the year.

The 7 Most Important Scientific Breakthroughs of 2017

Key discoveries happened in the fields of gene editing, space travel, quantum communications, astronomy, and quantum physics.

Let’s take a deeper dive into these incredible scientific breakthroughs.

The Subatomic Level

At the subatomic particle level, there were a couple of noteworthy advances that will help us better understand the complex inner-workings of quantum mechanics.

New particles: Using the Large Hadron Collider (LHC), a team of scientists discovered five new particles – all from a single analysis. These particles may give us a better understanding of the correlation between quarks and multi-quark states, as well as some clues about the earliest moments of the universe.

Quantum communications: The first unhackable video call happened between China and Vienna in September. Rather than using traditional cryptography, it relied on quantum key distribution (QKD) to protect the call. Using single photons in quantum superposition states is a way to raise the level of security so high, that it’s not even hackable by quantum computers.

The Final Frontier

Important progress was also made in space travel and astronomy:

Reusable rockets: Elon Musk and his SpaceX team launched a previously used Falcon 7 rocket booster. For humans to be able to do anything significant off the planet, cutting down the cost of commercial space travel is a crucial step in the right direction.

New Earth-like planets: In a remote star system called TRAPPIST-1, scientists discovered seven Earth-like exoplanets in the “goldilocks zone” – where life (as we know it) can exist.

Life Sciences

Lastly, the other three major discoveries fall under the category of life sciences:

Embryo gene editing: Researchers successfully edited a one-cell human embryo in Portland, Oregon. This could make it easier to cure heritable diseases or defective genes in the future.

Gene editing in body: A 44-year-old patient suffering from a rare disease, Hunter syndrome, had his genome successfully edited using CRISPR.

Artificial womb: An artificial womb successfully imitated the environment inside a uterus, housing a 23-week old lamb. Premature births are a leading cause of death for newborns.

With the speed of science and technological change continuing to accelerate, it should not be surprising to see an even more exciting list of breakthroughs in 2018.

Click for Comments

Technology

Charting the Next Generation of Internet

In this graphic, Visual Capitalist has partnered with MSCI to explore the potential of satellite internet as the next generation of internet innovation.

Published

on

Teaser image of a bubble chart showing the large addressable market of satellite internet.

Published

on

The following content is sponsored by MSCI

Could Tomorrow’s Internet be Streamed from Space?

In 2023, 2.6 billion people could not access the internet. Today, companies worldwide are looking to innovative technology to ensure more people are online at the speed of today’s technology. 

Could satellite internet provide the solution?  

In collaboration with MSCI, we embarked on a journey to explore whether tomorrow’s internet could be streamed from space. 

Satellite Internet’s Potential Customer Base

Millions of people live in rural communities or mobile homes, and many spend much of their lives at sea or have no fixed abode. So, they cannot access the internet simply because the technology is unavailable. 

Satellite internet gives these communities access to the internet without requiring a fixed location. Consequently, the volume of people who could get online using satellite internet is significant:

AreaPotential Subscribers
Households Without Internet Access600,000,000
RVs 11,000,000
Recreational Boats8,500,000
Ships100,000
Commercial Aircraft25,000

Advances in Satellite Technology

Satellite internet is not a new concept. However, it has only recently been that roadblocks around cost and long turnaround times have been overcome.

NASA’s space shuttle, until it was retired in 2011, was the only reusable means of transporting crew and cargo into orbit. It cost over $1.5 billion and took an average of 252 days to launch and refurbish. 

In stark contrast, SpaceX’s Falcon 9 can now launch objects into orbit and maintain them at a fraction of the time and cost, less than 1% of the space shuttle’s cost.

Average Rocket Turnaround TimeAverage Launch/Refurbishment Cost
Falcon 9*21 days< $1,000,000
Space Shuttle252 days$1,500,000,000 (approximately)

Satellites are now deployed 300 miles in low Earth orbit (LEO) rather than 22,000 miles above Earth in Geostationary Orbit (GEO), previously the typical satellite deployment altitude.

What this means for the consumer is that satellite internet streamed from LEO has a latency of 40 ms, which is an optimal internet connection. Especially when compared to the 700 ms stream latency experienced with satellite internet streamed from GEO. 

What Would it Take to Build a Satellite Internet?

SpaceX, the private company that operates Starlink, currently has 4,500 satellites. However, the company believes it will require 10 times this number to provide comprehensive satellite internet coverage.

Charting the number of active satellites reveals that, despite the increasing number of active satellites, many more must be launched to create a comprehensive satellite internet. 

YearNumber of Active Satellites
20226,905
20214,800
20203,256
20192,272
20182,027
20171,778
20161,462
20151,364
20141,262
20131,187

Next-Generation Internet Innovation

Innovation is at the heart of the internet’s next generation, and the MSCI Next Generation Innovation Index exposes investors to companies that can take advantage of potentially disruptive technologies like satellite internet. 

You can gain exposure to companies advancing access to the internet with four indexes: 

  • MSCI ACWI IMI Next Generation Internet Innovation Index
  • MSCI World IMI Next Generation Internet Innovation 30 Index
  • MSCI China All Shares IMI Next Generation Internet Innovation Index
  • MSCI China A Onshore IMI Next Generation Internet Innovation Index

MSCI thematic indexes are objective, rules-based, and regularly updated to focus on specific emerging trends that could evolve.

Visual Capitalist Logo

Click here to explore the MSCI thematic indexes

You may also like

Appian-Capital

Subscribe

Continue Reading
Appian-Capital

Subscribe

Popular