Connect with us

Space

Exploring the Expanse: 30 Years of Hubble Discoveries

Published

on

View the full-size version of the infographic

Exploring the Expanse Hubble Discoveries

Exploring the Expanse: 30 Years of Hubble Discoveries

View the full-size version of the infographic by clicking here.

We’ve been fascinated by space for centuries, but telescopes truly opened our eyes to what lies beyond our frontiers.

For 30 years, the Hubble Space Telescope has been our companion in helping us understand outer space, paving the way for many important scientific discoveries in the process.

A Window to the Universe

Hubble launched on Apr 24, 1990 and has been in our orbit ever since. However, it had something of a shaky start. Due to an error in its primary mirror, it returned many wobbly and blurry images—until a servicing mission in December 1993 fixed the issue.

Today’s incredible map was created by Nadieh Bremer of Visual Cinnamon, for the scientific journal Physics Today. It incorporates over 550,000 scientific observations, to show the diverse objects captured by Hubble between 1990-2019.

Certain constellations have been included to help place these findings, many of which are also visible to the naked eye. Here are the main color-coded categories found on the map:

  • Yellow: Star/ Stellar cluster
    Example: V838 Monocerotis, which includes a red star and a light echo.
  • Red: Galaxy/ Clusters of galaxies
    Example: Spiral galaxy M81, half the size of the Milky Way.
  • Green: Interstellar medium (ISM)
    Example: Eagle Nebula, a majestic spire of cosmic dust and gas, resembling pillars and spanning 4-5 light years.
  • Blue: Solar System
    Example: Jupiter’s Great Red Spot, a high-pressure storm in the planet’s atmosphere.
  • Pink: Calibration/Unidentified (e.g. Hubble Deep Field surveys)
    Example: Ultra Deep Field, which captured a view of 10,000 galaxies over 11 days—some which date back to the early billion years of the universe.

NASA considers the Hubble telescope the “most significant advance in astronomy since Galileo’s telescope” and not without good reason—its total observations top 1.3 million.

Hubble Observations, by Category

The journey doesn’t end there, either. Bremer also looked at the frequency of Hubble observations that occurred within each of these categories, ranging from 1,000-20,000.

Hubble Observation by Category

Source: Physics Today

Each category encompasses multiple distinctive descriptions. For example, galaxies can be broken down further into whether they are spiral, nuclear, elliptical-shaped and much more.

Hubble’s Growing Legacy

The images sent back by Hubble over these three decades are not just for aesthetic purposes. The telescope is also responsible for immense contributions to the astronomy field: close to 13,000 scientific papers have used Hubble as a source to date.

The biggest scientific breakthrough thus far? The realization that our universe is expanding at an accelerating rate—thanks to a force called dark energy.

Hubble really did open up the whole universe to us in a way that nothing else did.

—Colleen Hartman, Former Deputy Center Director, NASA Goddard Space Flight Center

It’s clear that Hubble already has an impressive legacy, and it’s not expected to be retired until at least the year 2025. Soon, it will be joining forces with the new James Webb Space Telescope, to be launched in March 2021. For the next generation of space enthusiasts, their eyes to the skies may well be the Webb instead.

For the true data viz nerds among us, here is an in-depth blog post detailing the sky map’s creation from scratch.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Comments

Misc

The 44 Closest Stars and How They Compare to our Sun

This graphic visualizes the 44 closest stars, revealing key facts such as distance from Earth, brightness, and whether potential planets are in orbit.

Published

on

44 closest stars

44 Closest Stars and How They Compare to our Sun

Humans have been fascinated by the stars in the night sky since the dawn of time.

We’ve been decoding the mysteries of celestial bodies for many centuries, but it is only in the last 200 years or so that we’ve been able to glean more detailed information on the lights that dot the night sky. Friedrich Bessel’s method of stellar parallax was a breakthrough in accurately measuring the positions of stars, and opened new doors in the effort to map our universe. Today, high-powered telescopes offer even more granular data on our cosmic neighborhood.

The infographic above, from Alan’s Factory Outlet, categorizes the 44 closest stars to Earth, examining the size, luminosity, constellations, systems, and potential planets of each star.

Our Nearest Stellar Neighbors

Our closest neighboring stars are all part of the same solar system: Alpha Centauri. This triple star system – consisting of Proxima Centauri, Alpha Centauri A, and Alpha Centauri B – attracts a lot of interest because it hosts planets, including one that may be similar to Earth.

The planet, Proxima Centauri b, is a lot closer to its star than Earth is to the Sun. However, because Proxima Centauri is a smaller and cooler red dwarf type star, the planet’s orbit is within the habitable zone. It’s thought that Proxima Centauri b receives approximately the same amount of solar energy as Earth does from our Sun.

Here’s a full list of the 44 of the closest stars to Earth:

Star NameDistance (light years)MoE
Sun0.000016±0.0011
Proxima Centauri4.37±0.0068
α Centauri A4.37±0.0068
α Centauri B4.37±0.0068
Barnard's Star5.96±0.0032
Wolf 3597.86±0.031
Lalande 211858.31±0.014
Sirius A8.66±0.010
Sirius B8.66±0.010
Luyten 726-8 A8.79±0.012
Luyten 726-8 B8.79±0.012
Ross 1549.70±0.0019
Ross 24810.29±0.0041
Epsilon Eridani10.45±0.016
Lacaille 935210.72±0.0016
Ross 12811.01±0.0026
EZ Aquarii A11.11±0.034
61 Cygni A11.40±0.0012
61 Cygni B11.40±0.0012
Procyon A11.40±0.032
Procyon B11.40±0.032
Struve 2398 A11.49±0.0012
Struve 2398 B11.49±0.0012
Groombridge 34 A11.62±0.0008
Groombridge 34 B11.62±0.0008
DX Cancri11.68±0.0056
Tau Ceti11.75±0.022
Epsilon Indi11.87±0.011
Gliese 106111.98±0.0029
YZ Ceti12.11±0.0035
Luyten's Star12.20±0.036
Teegarden's Star12.50±0.013
SCR 1845-635713.05±0.008
Kapteyn's Star12.83±0.0013
Lacaille 876012.95±0.0029
Kruger 60 A13.07±0.0052
Kruger 60 B13.07±0.0052
Wolf 106114.05±0.0038
Wolf 424 A14.05±0.26
Van Maanen's star14.07±0.0023
Gliese 114.17±0.0037
TZ Arietis14.58±0.0070
Gliese 67414.84±0.0033
Gliese 68714.84±0.0022

Even though we see many of these stars in the night sky, humans aren’t likely to see them in person any time soon. To put these vast distances into perspective, if the Voyager spacecraft were to travel to Proxima Centauri, it would take over 73,000 years to finally arrive.

The Brightest Stars in the Sky

The closest stars aren’t necessarily the ones most visible to us here on Earth. Here are the top 10 stars in terms of visual brightness from Earth:

RankProper nameConstellationVisual magnitude (mV)Distance (light years)
1SunN/A−26.740.000016
2SiriusCanis Major−1.468.6
3CanopusCarina−0.74310.0
4Rigil Kentaurus & TolimanCentaurus−0.27 (0.01 + 1.33)4.4
5ArcturusBoötes−0.0537.0
6VegaLyra0.03 (−0.02–0.07var)25.0
7CapellaAuriga0.08 (0.03–0.16var)43.0
8RigelOrion0.13 (0.05–0.18var)860.0
9ProcyonCanis Minor0.3411.0
10AchernarEridanus0.46 (0.40–0.46var)139.0

Excluding our Sun, the brightest star visible from Earth is Sirius, or the Dog Star. Sirius, which is about 25 times more luminous than the sun, visually punctuates the constellation Canis Major.

Filling in the Gaps

The next step in learning more about our surroundings in the cosmos will be seeing which of the stars listed above have planets orbiting them. So far, the 44 stars in the infographic have over 40 planets scattered among them, though new discoveries are made all the time.

With each new mission and discovery, we learn a little bit more about our pocket of the universe.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Continue Reading

Mining

Mapped: The Geology of the Moon in Astronomical Detail

Behold the glory of the Unified Geologic Map of the Moon, which brings decades of data into one map, revealing the potential for exploration.

Published

on

Geologic Map of the Moon

Mapped: The Geology of the Moon in Astronomical Detail

If you were to land on the Moon, where would you go?

Today’s post is the incredible Unified Geologic Map of the Moon from the USGS, which combines information from six regional lunar maps created during the Apollo era, as well as recent spacecraft observations.

Feet on the Ground, Head in the Sky

Since the beginning of humankind, the Moon has captured our collective imagination. It is one of the few celestial bodies visible to the naked eye from Earth. Over time different cultures wrapped the Moon in their own myths. To the Egyptians it was the god Thoth, to the Greeks, the goddess Artemis, and to the Hindus, Chandra.

Thoth was portrayed as a wise counselor who solved disputes and invented writing and the 365-day calendar. A headdress with a lunar disk sitting atop a crescent moon denoted Thoth as the arbiter of times and seasons.

Artemis was the twin sister of the sun god Apollo, and in Greek mythology she presided over childbirth, fertility, and the hunt. Just like her brother that illuminated the day, she was referred to as the torch bringer during the dark of night.

Chandra means the “Moon” in Sanskrit, Hindi, and other Indian languages. According to one Hindu legend, Ganesha—an elephant-headed deity—was returning home on a full moon night after a feast. On the journey, a snake crossed his pathway, frightening his horse. An overstuffed Ganesha fell to the ground on his stomach, vomiting out his dinner. On observing this, Chandra laughed, causing Ganesha to lose his temper. He broke off one of his tusks and hurled it toward the Moon, cursing him so that he would never be whole again. This legend describes the Moon’s waxing and waning including the big crater on the Moon, visible from Earth.

Such lunar myths have waned as technology has evolved, removing the mystery of the Moon but also opening up scientific debate.

Celestial Evolution: Two Theories

The pot marks on the Moon can be easily seen from the Earth’s surface with the naked eye, and it has led to numerous theories as to the history of the Moon. Recent scientific study brings forward two primary ideas.

One opinion of those who have studied the Moon is that it was once a liquid mass, and that its craters represent widespread and prolonged volcanic activity, when the gases and lava of the heated interior exploded to the surface.

However, there is another explanation for these lunar craters. According to G. K. Gilbert, of the USGS, the Moon was formed by the joining of a ring of meteorites which once encircled the Earth, and after the formation of the lunar sphere, the impact of meteors produced “craters” instead of arising from volcanic activity.

Either way, mapping the current contours of the lunar landscape will guide future human missions to the Moon by revealing regions that may be rich in useful resources or areas that need more detailed mapping to land a spacecraft safely .

Lay of the Land: Reading the Contours of the Moon

This map is a 1:5,000,000-scale geologic map built from six separate digital maps. The goal was to create a resource for science research and analysis to support future geologic mapping efforts.

Mapping purposes divide the Moon into the near side and far side. The far side of the Moon is the side that always faces away from the Earth, while the near side faces towards the Earth.

The most visible topographic feature is the giant far side South Pole-Aitken basin, which possesses the lowest elevations of the Moon. The highest elevations are found just to the northeast of this basin. Other large impact basins, such as the Maria Imbrium, Serenitatis, Crisium, Smythii, and Orientale, also have low elevations and elevated rims.

Shapes of Craters

The colors on the map help to define regional features while also highlighting consistent patterns across the lunar surface. Each one of these regions hosts the potential for resources.

Lunar Resources

Only further study will resolve the evolution of the Moon, but it is clear that there are resources earthlings can exploit. Hydrogen, oxygen, silicon, iron, magnesium, calcium, aluminum, manganese, and titanium are some of the metals and minerals on the Moon.

Interestingly, oxygen is the most abundant element on the Moon. It’s a primary component found in rocks, and this oxygen can be converted to a breathable gas with current technology. A more practical question would be how to best power this process.

Lunar soil is the easiest to mine, it can provide protection from radiation and meteoroids as material for construction. Ice can provide water for radiation shielding, life support, oxygen, and rocket propellant feed stock. Compounds from permanently shadowed craters could provide methane, ammonia, carbon dioxide, and carbon monoxide.

This is just the beginning—as more missions are sent to the Moon, there is more to discover.

Space Faring Humans

NASA plans to land astronauts—one female, one male—to the Moon by 2024 as part of the Artemis 3 mission, and after that, about once each year. It’s the beginning of an unfulfilled promise to make humans a space-faring civilization.

The Moon is just the beginning…the skills learned to map Near-Earth Objects will be the foundation for further exploration and discovery of the universe.

Subscribe to Visual Capitalist

Continue Reading

Subscribe

Join the 200,000+ subscribers who receive our daily email

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Popular