18 Cognitive Bias Examples Show Why Mental Mistakes Get Made
Connect with us

Misc

18 Cognitive Bias Examples Show Why Mental Mistakes Get Made

Published

on

View a high resolution version of this graphic
18 Cognitive Bias Examples Show Why Mental Mistakes Get Made

18 Cognitive Bias Examples

View the high resolution version of today’s graphic by clicking here.

Out of the 188 cognitive biases that exist, there is a much narrower group of biases that has a disproportionately large effect on the ways we do business.

These are things that affect workplace culture, budget estimates, deal outcomes, and our perceived return on investments within the company.

Mental mistakes such as these can add up quickly, and can hamper any organization in reaching its full bottom line potential.

Cognitive Bias Examples

Today’s infographic from Raconteur aptly highlights 18 different cognitive bias examples that can create particularly difficult challenges for company decision-making.

The list includes biases that fall into categories such as financial, social, short term-ism, and failure to estimate:

Financial biases
These are imprecise mental shortcuts we make with numbers, such as hyperbolic discounting – the mistake of preferring a smaller, sooner payoff instead of a larger, later reward. Another classic financial cognitive bias example is the “Ostrich effect”, which is where one sticks their head in the sand, pretending that negative financial information simply doesn’t exist.

Social biases
Social biases can have a big impact on teams and company culture. For example, teams can bandwagon (when people do something because other people are doing it), and individual team members can engage in blind spot bias (viewing oneself as less biased than others). These both can lead to worse decision-making.

Short Term-isms
One way to ensure a business that doesn’t last? Engage in short term-isms – fallacies that gear your business towards decisions that can be rationalized now, but that don’t add any long-term value. Status quo bias and anchoring are two ways this can happen.

Failure to Estimate
So much about business relies on making projections about the future, and the biases in this category make it difficult to make accurate estimates. Cognitive bias examples here include the availability heuristic (just because information is available, means it must be true), and the gambler’s fallacy (future probabilities are altered by past events).

Want more on cognitive biases? Here are five main biases that impact investors, specifically.

Subscribe to Visual Capitalist
Click for Comments

Misc

Visualizing Two Decades of Reported Hate Crimes in the U.S.

Hate crimes across the U.S. have been on the rise since 2014. Here’s a look at the most common types of offenses over the years.

Published

on

Two Decades of Hate Crimes in the U.S.

Visualizing Two Decades of Reported Hate Crimes in the U.S.

Across the U.S., thousands of hate crimes are committed each year, with many different motivating biases.

In 2020 alone, more than 10,000 unique hate crime incidents were reported to the Federal Bureau of Investigation (FBI)—and it’s likely that thousands more were committed that didn’t get reported to law enforcement.

What are the most commonly reported motivating biases, and how have hate crime rates evolved over the years? This graphic uses data from the FBI to visualize two decades of reported hate crime incidents across America.

What is Considered a Hate Crime?

Before diving in, it’s important to determine what constitutes a hate crime.

According to the U.S. Department of Justice, a hate crime is a crime that’s “committed on the basis of the victim’s perceived or actual race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.”

These types of crimes are a threat to society, as they have a broader impact on communities than other types of crimes do. This is because hate crimes can foster fear and intimidate large groups of people or marginalized communities, making them feel unwelcome, unsafe, or othered.

Hate Crimes on the Rise

Hate crimes have been rising across the U.S. in nearly every year since 2014. By 2020, reported crimes across America reached record-level highs not seen in over two decades.

YearNumber of Reported Incidents% Change (y-o-y)
2001973018.4%
20027485-23.1%
200375450.8%
200476851.9%
20057411-3.6%
200677154.1%
20077625-1.2%
200880395.4%
20096613-17.7%
201066330.3%
20116299-5.0%
201265944.7%
20136044-8.3%
20145599-7.4%
201558714.9%
201662766.9%
2017732116.7%
20187170-2.1%
2019789210.1%
20201029930.5%

And sadly, these figures are likely a vast undercount. Law enforcement submit this data to the FBI of their own volition, and in 2020, thousands of agencies did not submit their crime statistics.

Race-Related Hate Crimes are Most Common

Historically, the most reported hate crimes in the U.S. are related to race. In 2020, about 66% of incidents were motivated by discrimination against the victim’s race or ethnicity.

Type of BiasTotal Number of Crimes (2020)% of Total
Race/Ethnicity679366.0%
Religion162615.8%
Sexual Orientation131112.7%
Other5695.5%
Total10299--

While race is the most commonly reported hate crime, incidents related to gender and gender identity are on the rise—in 2020, there was a 9% increase in gender-related incidents, and a 34% increase in gender identity-related incidents, compared to 2019 figures.

Continue Reading

Science

Visualizing the Relationship Between Cancer and Lifespan

New research links mutation rates and lifespan. We visualize the data supporting this new framework for understanding cancer.

Published

on

Cancer and lifespan

A Newfound Link Between Cancer and Aging?

A new study in 2022 reveals a thought-provoking relationship between how long animals live and how quickly their genetic codes mutate.

Cancer is a product of time and mutations, and so researchers investigated its onset and impact within 16 unique mammals. A new perspective on DNA mutation broadens our understanding of aging and cancer development—and how we might be able to control it.

Mutations, Aging, and Cancer: A Primer

Cancer is the uncontrolled growth of cells. It is not a pathogen that infects the body, but a normal body process gone wrong.

Cells divide and multiply in our bodies all the time. Sometimes, during DNA replication, tiny mistakes (called mutations) appear randomly within the genetic code. Our bodies have mechanisms to correct these errors, and for much of our youth we remain strong and healthy as a result of these corrective measures.

However, these protections weaken as we age. Developing cancer becomes more likely as mutations slip past our defenses and continue to multiply. The longer we live, the more mutations we carry, and the likelihood of them manifesting into cancer increases.

A Biological Conundrum

Since mutations can occur randomly, biologists expect larger lifeforms (those with more cells) to have greater chances of developing cancer than smaller lifeforms.

Strangely, no association exists.

It is one of biology’s biggest mysteries as to why massive creatures like whales or elephants rarely seem to experience cancer. This is called Peto’s Paradox. Even stranger: some smaller creatures, like the naked mole rat, are completely resistant to cancer.

This phenomenon motivates researchers to look into the genetics of naked mole rats and whales. And while we’ve discovered that special genetic bonuses (like extra tumor-suppressing genes) benefit these creatures, a pattern for cancer rates across all other species is still poorly understood.

Cancer May Be Closely Associated with Lifespan

Researchers at the Wellcome Sanger Institute report the first study to look at how mutation rates compare with animal lifespans.

Mutation rates are simply the speed at which species beget mutations. Mammals with shorter lifespans have average mutation rates that are very fast. A mouse undergoes nearly 800 mutations in each of its four short years on Earth. Mammals with longer lifespans have average mutation rates that are much slower. In humans (average lifespan of roughly 84 years), it comes to fewer than 50 mutations per year.

The study also compares the number of mutations at time of death with other traits, like body mass and lifespan. For example, a giraffe has roughly 40,000 times more cells than a mouse. Or a human lives 90 times longer than a mouse. What surprised researchers was that the number of mutations at time of death differed only by a factor of three.

Such small differentiation suggests there may be a total number of mutations a species can collect before it dies. Since the mammals reached this number at different speeds, finding ways to control the rate of mutations may help stall cancer development, set back aging, and prolong life.

The Future of Cancer Research

The findings in this study ignite new questions for understanding cancer.

Confirming that mutation rate and lifespan are strongly correlated needs comparison to lifeforms beyond mammals, like fishes, birds, and even plants.

It will also be necessary to understand what factors control mutation rates. The answer to this likely lies within the complexities of DNA. Geneticists and oncologists are continuing to investigate genetic curiosities like tumor-suppressing genes and how they might impact mutation rates.

Aging is likely to be a confluence of many issues, like epigenetic changes or telomere shortening, but if mutations are involved then there may be hopes of slowing genetic damage—or even reversing it.

While just a first step, linking mutation rates to lifespan is a reframing of our understanding of cancer development, and it may open doors to new strategies and therapies for treating cancer or taming the number of health-related concerns that come with aging.

Continue Reading

Subscribe

Popular